Advanced Photon Source

An Office of Science National User Facility

Magnetic Materials

Recent Research Highlights

Actinides are a series of chemical elements that form the basis of nuclear fission technology, finding applications in strategic areas such as power generation, space exploration, diagnostics and medical treatments, and also in some special glass. Thorium and Uranium are the most abundant actinides in the Earth's crust. A deeper understanding of the properties of uranium and other actinides is necessary not only for their more efficient use in existing applications but also for proposing new applications. Several open questions remain; progress in this area is usually limited in part by the difficulty in handling these materials safely.
4-ID-D
Researchers used resonant XRD (6-ID-B) and XAS (4-ID-D) to probe emergence of a “Polar metal” at the strained interface of an oxide heterostructure in an attempt to accelerate discovery of multifunctional materials with ability to perform simultaneous electrical, magnetic and optical functions.
4-ID-D, 6-ID-B,C
Layer by layer, University of Tennessee, Knoxville physicists are exploring the frontiers of tuning material properties down to the atomic level. Experimenting with the stacking pattern of superlattices at the U.S. Department of Energy’s Advanced Photon Source, the UT researchers and their colleagues investigated inter- and intra-layer dynamics to learn more about magnetism on the nanoscale, with potential connections to high-temperature superconductivity and spintronics.
4-ID-D, 6-ID-B,C
Researchers used high energy XRD at beamline 6-ID-D, coupled with aerodynamic levitation, to study the liquid/solid transition of high-entropy alloys with an eye at enabling new generation materials with enhanced mechanical properties.
6-ID-D
Researchers used XRD (6-ID-B) and XAS/XMCD (4-ID-D) techniques to probe the effects of dimensional confinement in manganite/iridate superlattices with an eye at enabling all-oxide spintronics
4-ID-D, 6-ID-B,C
Researchers used XAS/XMCD measurements at beamline 4-ID-D to probe the spin and orbital moments, as well as spin-orbit coupling, in 5f states of Pu in ferromagnetic PuSb. While Pu 5f electrons are usually neither localized nor delocalized, the six 5f electrons in PuSb were found to be localized, the shape of the Pu M-edge XMCD spectra a proxy to the degree of localization.
4-ID-D
Sometimes a good theory just needs the right materials to make it work. That’s the case with recent findings by University of Tennessee, Knoxville’s physicists and their colleagues, who designed a two-dimensional magnetic system that points to the possibility of devices with increased security and efficiency, using only a small amount of energy. The researchers studied the hidden physical properties of the material by utilizing high-brightness x-rays from the U.S. Department of Energy’s Advanced Photon Source, an Office of Science user facility at Argonne National Laboratory.
4-ID-D, 6-ID-B,C, 33-BM-C
Two-dimensional (2-D) crystalline films often exhibit interesting physical characteristics, such as unusual magnetic or electric properties. By layering together distinct crystalline thin films, a so-called “superlattice” is formed. Due to their close proximity, the distinct layers of a superlattice may significantly affect the properties of other layers. In this research, single 2-D layers of strontium iridium oxide were sandwiched between either one, two, or three layers of strontium titanium oxide to form three distinct superlattices. Researchers then used x-ray scattering at the U.S. Department of Energy’s Advanced Photon Source to probe the magnetic structure of each superlattice.
4-ID-D, 6-ID-B,C
Layer by layer, University of Tennessee, Knoxville physicists are exploring the frontiers of tuning material properties down to the atomic level. Experimenting with the stacking pattern of superlattices at the U.S. Department of Energy’s Advanced Photon Source, the UT researchers and their colleagues investigated inter- and intra-layer dynamics to learn more about magnetism on the nanoscale, with potential connections to high-temperature superconductivity and spintronics.
4-ID-D, 6-ID-B,C
A new material created by Oregon State University researchers and characterized with help from the U.S. Department of Energy’s Advanced Photon Source and Oak Ridge National Laboratory is a key step toward the next generation of supercomputers. Those “quantum computers” will be able to solve problems well beyond the reach of existing computers while working much faster and consuming vastly less energy.
4-ID-D
Researchers used resonant magnetic scattering measurements at beamline 6-ID-B to probe magnetic ordering in Na2IrO3, a material where anisotropic exchange (Kitaev) interactions dominate over isotropic (Heisenberg) exchange interactions. Spin-orbit coupling in heavy Ir atoms is at the root of the bond-directional exchange interactions. In the absence of competing Heisenberg interactions, a quantum spin liquid ground state can emerge when the geometrical arrangement of Ir magnetic moments leads to frustration.
6-ID-B,C
Researchers used XAS/XMCD measurements at 4-ID-C to probe the interface between a topological insulator and a magnetic materials with an eye at enabling advanced electronic devices including quantum computing.
4-ID-C
Researchers used single crystal XMCD measurements at beamlines 4-ID-C and 4-ID-D to show presence of itinerant ferromagnetism (Tc ~ 100 K) in the As 4p band of K-doped BaMn2As2 which is not associated with an underlying collinear AFM order of the Mn sublattice. The proximity of magnetic and superconducting phases in these materials provided motivation for these studies.
4-ID-C, 4-ID-D
Researchers used high energy diffraction measurements of aerodynamically-levitated, glass-forming liquids at 6-ID-D to investigate the liquid and glass structures of Sodium Borate. The goal is to discover glasses that are more functional and test models of glass formation.
6-ID-D
Researchers used x-ray photoemission spectroscopy (XPS) at beamline 4-ID-C to show that electrons that are spin-polarized by traversing chiral DNA can lead to chiral selective chemistry. This is manifested in an imbalance in the production of L and R enantiometers of model chiral compounds adsorbed into a self assembled monoloayer of DNA on a gold substrate. The results could explain the chiral preference in pre-biological molecules on the early Earth.
4-ID-C
Single crystal magnetic diffraction measurements at 4-ID-D were used to investigate the magnetic characteristics of a helical spin-order phase preceding a recently discovered pressure-induced superconducting phase in manganese phosphide (MnP).
4-ID-D
A team of researchers used a combination of high-resolution structural imaging, magnetic domain imaging, and dichroic spectroscopy on three separate x-ray beamlines at the U.S. Department of Energy’s Advanced Photon Source to shed light on coupled structural and magnetic phase transitions. Through this combination of three individually powerful x-ray techniques, the team was able to provide added insights into the phase transition process and the nature of the coupling between the magnetic and structural order.
4-ID-D, 26-ID-C
Sometimes a little frustration and disorder can be a good thing, at least in the quest for the elusive and exotic state of matter known as a quantum spin liquid (QSL). In such systems, the electrons are strongly “entangled,” a quantum phenomenon that is the basis of quantum computing but has proven extremely difficult to recreate except under tightly controlled laboratory environments. But QSLs naturally form such states, arising from their strong interactions (or correlations) that also serve to protect their entanglement from environmental influences. One class of these systems is the Kitaev quantum spin liquid, which takes advantage of anisotropic magnetic interactions on a honeycomb lattice.
6-ID-B,C
Researchers used XAS (4-ID-D) and resonant XRD (6-ID-B) to study the role of electron-lattice coupling in the metal-insulator transition (MIT) of rare-earth nickelates by controlling lattice distortions via strain manipulation in epitaxial films. Manipulation of electrical conductivity may lead to novel electronic sensors and devices.
4-ID-D, 6-ID-B,C
Sometimes a good theory just needs the right materials to make it work. That’s the case with recent findings by University of Tennessee, Knoxville’s physicists and their colleagues, who designed a two-dimensional magnetic system that points to the possibility of devices with increased security and efficiency, using only a small amount of energy. The researchers studied the hidden physical properties of the material by utilizing high-brightness x-rays from the U.S. Department of Energy’s Advanced Photon Source, an Office of Science user facility at Argonne National Laboratory.
4-ID-D, 6-ID-B,C, 33-BM-C
Researchers used XRD (6-ID-B) and XAS/XMCD (4-ID-D) techniques to probe the effects of dimensional confinement in manganite/iridate superlattices with an eye at enabling all-oxide spintronics
4-ID-D, 6-ID-B,C
Researchers used resonant XRD (6-ID-B) and XAS (4-ID-D) to probe emergence of a “Polar metal” at the strained interface of an oxide heterostructure in an attempt to accelerate discovery of multifunctional materials with ability to perform simultaneous electrical, magnetic and optical functions.
4-ID-D, 6-ID-B,C
Researchers used XAS (4-ID-D) and resonant XRD (6-ID-B) to study the role of electron-lattice coupling in the metal-insulator transition (MIT) of rare-earth nickelates by controlling lattice distortions via strain manipulation in epitaxial films. Manipulation of electrical conductivity may lead to novel electronic sensors and devices.
4-ID-D, 6-ID-B,C
Researchers used x-ray resonant scattering measuremets at 6-ID-B to probe the collapse of magnetic ordering in Mott insulator iridate Sr3Ir2O7 as electrons are doped with La doping at the Sr site. The first-order collapse of magnetic order coincided with emergence of a metallic state.
6-ID-B,C
Two-dimensional (2-D) crystalline films often exhibit interesting physical characteristics, such as unusual magnetic or electric properties. By layering together distinct crystalline thin films, a so-called “superlattice” is formed. Due to their close proximity, the distinct layers of a superlattice may significantly affect the properties of other layers. In this research, single 2-D layers of strontium iridium oxide were sandwiched between either one, two, or three layers of strontium titanium oxide to form three distinct superlattices. Researchers then used x-ray scattering at the U.S. Department of Energy’s Advanced Photon Source to probe the magnetic structure of each superlattice.
4-ID-D, 6-ID-B,C
The behavior of iron at high temperatures and pressures plays an important part in our understanding of Earth's interior. Scientists must quantify how iron's physical and chemical characteristics are both affected by and affect the environment within Earth's mantle and core to make sense of the reactions which molten, subsurface magmas undergo. Researchers using high-brightness x-rays at the U.S. Department of Energy’s Advanced Photon Source at Argonne monitored the behavior of a model iron silicate melt to investigate how its structure and oxidation state change as a function of the amount of oxygen present. These new results — using melts based on fayalite (Fe2SiO4), the iron-rich end-member of the olivine solid-solution series — reveal contrasting behavior between this melt and more silicic magmas, including basaltic melts.
6-ID-D, 20-BM-B
Researchers used single crystal XMCD measurements at beamlines 4-ID-C and 4-ID-D to show presence of itinerant ferromagnetism (Tc ~ 100 K) in the As 4p band of K-doped BaMn2As2 which is not associated with an underlying collinear AFM order of the Mn sublattice. The proximity of magnetic and superconducting phases in these materials provided motivation for these studies.
4-ID-C, 4-ID-D

The Magnetic Material Group (MMG) is part of the X-ray Science Division (XSD) at the Advanced Photon Source (APS).

Our research focuses on the study of magnetic, electronic, and structural properties of condensed matter systems using x-ray scattering and spectroscopy techniques. The group currently operates 5 beamlines at APS sectors 4, 6 and 29.

Beamlines
4-ID-C: Soft X-ray Magnetic Spectroscopy
This beamline operates in the soft x-ray energy spectrum (500 - 2700 eV) using an electromagnetic helical undulator to provide circularly polarized x-rays of either helicity and both vertically and horizontally linear polarized light. This beamline is used for XCMD spectroscopy, resonant magnetic scattering, and X-PEEM imaging experiments.
4-ID-D: Hard X-ray Magnetic Spectroscopy
This beamline operates at hard x-ray energies (2.5 - 40 keV), and provides polarized x-rays using phase retarding optics. It is used for magnetic circular dichroism (XMCD) and magnetic scattering experiments.
6-ID-B,C: Resonant and In-Field Scattering
Beamline 6-ID-B,C operates in the 4-35 keV energy range. Station B station houses a general purpose psi-diffractometer for resonant scattering. Station C is dedicated to scattering experiments in high magnetic fields.
6-ID-D: High Energy Scattering
Beamline 6-ID-D is the high-energy( 50 - 130 keV) scattering station on 6-ID. This beamline uses a prototype superconducting undulator as its x-ray source and can leverage harmonic radiation from a planar undulator in the same straight section for additional flux. This station is used primarily for materials characterization using area detectors.
29-ID: Intermediate Energy RSXS & ARPES
Beamline 29-ID is an intermediate energy (200 -2000 eV) beamline designed for Resonant Soft X-ray Scattering (RSXS) and Angle Resolved Photoemission (ARPES) measurements. This beamline was recently commissioned and is accepting general users.

All MMG beamlines offer time to outside users through the APS proposal system. If you are interesed in performing an experiment, please feel free to contact one or our staff.