The Advanced Photon Source
a U.S. Department of Energy Office of Science User Facility

NST Seminar: Light-matter Interactions for Optical Communications and Energy-related Applications

Type Of Event
Building Number
Room Number
Ankun Yang, Stanford University
Daniel Lopez
Start Date
Start Time
11:00 a.m.

Light-matter interactions are closely related to everyday life and are the fundamental basis for optical communications and light microscopy and spectroscopy. In the first part of my talk, I will present my study of small-size lasers toward on-chip optical communications. Plasmon lasers represent a type of small lasers that support ultrasmall mode confinement and ultrafast dynamics with device feature sizes below the diffraction limit. However, plasmon-based lasers show emission with limited far-field directionality. In addition, most plasmon-based lasers rely on solid gain materials, e.g., inorganic semiconducting nanowire or organic dye in a solid matrix, that preclude the possibility of dynamic tuning. I will show that arrays of gold nanoparticles surrounded by liquid dye molecules exhibit directional lasing emission that can be modulated by the dielectric environment. By integrating gold nanoparticle arrays within microfluidic channels and flowing in liquid gain materials with different refractive indices, dynamic tuning of the lasing wavelength has been achieved.

In the second part of the talk, I will present more recent research using in situ light microscopy and spectroscopy approaches to study electrochemical devices. Lithium sulfur (Li-S) batteries are attractive candidates for energy storage with high energy density. Sulfur, the charge product in Li-S batteries, was believed to be solid, while we discovered that sulfur can stay in super-cooled state as liquid sulfur. To reveal the implications of this finding, I use a typical 2D material molybdenum disulfide (MoS2) as a platform to show distinct growth behaviors of sulfur on the basal plane (liquid) and edges (solid). Through correlating the sulfur states (liquid or solid) with the electrochemical performances, liquid sulfur is demonstrated to have much faster kinetics compared to solid sulfur. Using a similar in situ optical set-up, I will also show ion intercalation of 2D materials through electrochemical approach as a promising low-temperature modification strategy to manipulate the material properties for nanoelectronics devices. I will conclude by presenting future prospects for exploiting light-matter interactions in nanostructured materials and systems for applications in both optical communications and energy-related applications.

Ankun Yang is a Postdoctoral Research Fellow in the Department of Materials Science and Engineering (MSE) at Stanford University. Ankun received his Bachelor’s and Master’s degrees in MSE at Tsinghua University, China. Ankun then went on to pursue his Ph.D. degree in MSE at Northwestern University under supervision of Professor Teri W. Odom, where he studied light-matter interactions in metallic nanoparticle assemblies and arrays, for plasmon-enhanced sensing and lasing. Ankun joined Professor Yi Cui’s group at Stanford University in July 2016, where he has investigated the interaction of two-dimensional (2D) materials with electrochemical species, including sulfur and alkali ions, through in situ light microscopy and spectroscopy. His research interests broadly lie in light-matter interactions in various low-dimensional material systems including plasmonic materials, 2D materials and energy-related materials for optoelectronics and electrochemical devices. Ankun’s work has earned him the Materials Research Society’s Graduate Student Award, the International Institute for Nanotechnology (IIN) Outstanding Researcher Award, Chinese Government Award for Outstanding Students Abroad, etc.


Last Updated

To report an event that is not listed, please contact webmaster, for additional synchrotron-related conferences, check