The Advanced Photon Source
a U.S. Department of Energy Office of Science User Facility

NST Seminar: The Full Field Diffraction X-ray Microscope on the ID01 Beamline ESRF

Type Of Event
School
Location
440/A105-A106
Building Number
440
Room Number
A105-A106
Speaker
Tao Zhou, European Synchrotron Radiation Facility (ESRF)
Start Date
06-15-2018
Start Time
11:00 a.m.
Description

Abstract:

With the advent of high quality x-ray optics, several techniques have been proposed to exploit the imaging under Bragg conditions at synchrotron sources. Within the framework of the ESRF upgrade, a new dedicated instrument has been implemented on beamline ID01 at The European Synchrotron (ESRF). Since April 2017 this instrument is fully operational and has supplied users with Full Field Diffraction X-ray Microscopy (FFDXM) imaging adapted to various sample environments. Compared to more established scanning diffraction techniques, FFDXM offers fast, spatially resolved images on a large sample area without mechanical motions, perfectly suited for in situ and operando experiments.

The concept of FFDXM will be first demonstrated. A set of objective lens is placed downstream the sample to make a dark field image of the diffracted beam. At 6.5 meters away, the illuminated sample area (Field of View : 200×200 μm^2) is magnified and spatially resolved on a sCMOS camera with a resolution of 100 nm. Essentially an x-ray strain microscope, the FFDXM is capable of probing lattice tilt, strain and grain orientation at surfaces, buried interfaces or inside functioning devices, which is often unreachable for electron microscopy techniques.
Results of several user and in house experiments will be given next, to illustrate the principle of diffraction topography (strained STO), mosaicity (InGaN nano-pyramids) and strain (buried gas cavities in implanted Si wafers) mapping using FFDXM. Typical image acquisition time is around 1 sec; a complete set of measurement takes just a few minutes.

Based on these measurement techniques, more complex experiments were conducted. The final part of the talk shall cover preliminary results and outlook from the most recent developments of the microscope, including in situ heating and cryogenic cooling, operando chemistry, sub-ns time resolved and composition sensitive imaging.

To report an event that is not listed, please contact webmaster, for additional synchrotron-related conferences, check lightsources.org.