X-ray Diffraction on Lightweight Materials for Hydrogen Storage

J.F. Krebs

Argonne National Laboratory, Argonne, IL U.S.A

Introduction

To further investigate the final products after exposing MgB₂, TiB₂, CaB₆, AlB₂, AlB₁₂, B₁₃P₂, and B₄C to H₂ at high temperature, high resolution x-ray diffraction experiments were conducted at the APS/MRCAT (Sector 10). The results of these experiments are summarized in this report.

Methods and Materials

A ThermoCahn Model TG-2121 thermogravimetric analyzer (TGA) was used. The instrument has a sensitivity of 0.1µg. The empty quartz basket was tared in argon prior to loading the sample. Hydrogen (AGA Gas, ultra high purity, 99.999%) and argon (AGA Gas, ultra high purity, 99.999%) were used. Each gas supply line was equipped with a No. 8123 In-Line Moisture Trap (Alltech, efficiency < 1ppm) followed by a No. 4004 Indicating Oxy-Trap (Alltech, efficiency < 1ppb). Flow rates of the gases were 50 mL/min determined with a Fisher Model 520 electronic bubble flowmeter. Samples were purged with argon for 60 minutes prior to introducing hydrogen. Samples were then purged with H₂ for 90 minutes prior to heating the samples. Samples were kept under the reaction gas during the heating/cooling cycles. Heating rates were 5°C/min and cooling rates were 10°C/min unless indicated otherwise.

X-ray diffraction measurements we made on the samples loaded in 0.5mm – 1.0 mm glass capillaries. The capillaries were spun at several hundred rpm. The x-ray wavelength was 1.2398(1) Å and a double slit collimator was used in front of the detector, achieving a 2θ resolution of 0.065°.

Results

Figure 1 depicts the results of holding AlB_2 at 600°C for 12 hrs under H_2 . As can be seen the weight of the sample continues to increase over during the 12 hr duration. A second experiment was conducted at temperatures of 600°C, 800°C, and 900°C the results of which are shown in Figure 2. Again, the weight of the sample of AlB_2 continued to increase with faster rates at higher temperatures. The high-resolution XRD data showed the resulting products of the AlB_2 experiment were Al_2O_3 and B_2O_3 oxides. Table 1 summarizes the expected weight increases assuming two different reactions that would lead to the products observed by the XRD experiments.

Clearly, the mass differences observed for the AlB₂ sample after H_2 treatment for longer reaction times either surpass or fall well below those expected based on the proposed reactions listed in Table 1. As both Al₂O₃ and B₂O₃ were observed in XRD data it is expected that the first reaction of Table 1 is the most probable.

Efforts to characterize the samples, before and after exposure to H_2 , using far infrared (far-IR) spectroscopy experiments yielded little or no information. High resolution XRD experiments were then conducted at the MRCAT at the APS. Figure 3 demonstrates the quality of the data obtained at the MRCAT versus data that was collected using a laboratory instrument. Without the high-resolution data it is very difficult

Figure 1. TGA trace of AlB₂ at 600°C for 12 hrs under H₂.

Figure 2. TGA trace of AlB_2 under H_2 for 24 hrs at temperatures of 600°C, 800°C, and 900°C.

to assign the proper phase to the AlB₁₂ sample, α -AlB₁₂ vs. β -AlB₁₂. Of the samples tested only the AlB₂ and MgB₂ samples demonstrated significant changes in their XRD patterns after treatment in H₂ up to 1000°C. All of the samples were compared to the available Powder Diffraction File (PDF) cards. The AlB₂ purchased from Aldrich has a small amount of aluminum metal present (Figure 4). After five cycles of 30-1000-30°C under H₂ the peaks corresponding to Al metal increase significantly with a concomitant decrease in the AlB₂ peaks. These observations suggest that an overall decrease in weight should be observed if boron is removed from the sample. However, even after five cycles small, but observable, peaks corresponding to Al₂O₃ and B₂O₃ can be observed in the XRD traces. After ten cycles the Al₂O₃ peaks increase in intensity corresponding to the continuous increase in weight observed during the TGA experiments. An important result from the TGA experiments is that AlB₂ is stable, with a slight weight loss, at temperatures up to 500°C. Above 500°C AlB₂ begins to react with the trace O₂ present in the gas stream. AlB₂ still

FW Mass (mg) mmoles $2AlB_2 + 4.5O_2 = Al_2O_3 + 2B_2O_3$ 1.0288 AlB₂ 48.6015 50.0000 02 31.9988 74.0690 2.3147 Al₂O₂ 101.9613 52.4476 0.5144 B_2O_2 69.6182 71.6215 1.0288 Mass 74.0691 difference $2\mathbf{AlB}_2 + 6\mathbf{H}_2 + \mathbf{1.5O}_2 = \mathbf{Al}_2\mathbf{O}_3 + \mathbf{2B}_2\mathbf{H}_3$ AlB₂ 48.6015 50.0000 1.0288 6.2214 3.0863 H_2 2.0158 24.6897 O_2 31.9988 0.7716 Al₂O₂ 101.9613 52.4476 0.5144 28.4635 B_2H_6 27.6674 1.0288 Mass difference 2.4476

Figure 3. Comparison of the XRD traces collected on laboratory x-ray diffractometer and the APS. The residual Al metal, in the AlB₂ sample, is more clearly seen in the highresolution APS data. The assignment of α -phase to the AlB₁₂ sample is straight forward.

holds promise as a potential hydrogen storage material that may demonstrate a tolerance to trace contaminants present in the source hydrogen.

The MgB₂ sample had demonstrated a very large weight loss at ~900°C under a stream of H₂. The interior surface of the quartz reactor tube became coated with the product of decomposition. As a slight excess of boron was initially present, it was thought

Figure 4. XRD traces of AlB_2 before and after 5-cycles and 10-cycles of $30-1000-30^{\circ}C$ in 99.999% H_2 . The peaks due to Al metal and Al_2O_3 increase with increasing number of cycles.

that the product was decomposed diborane. These experiments clearly showed that the MgB_2 sample is converted to MgO. Elemental analysis has not been performed on the treated sample, but from the XRD trace (not shown) it appears that all of the MgB_2 is converted to MgO with residual elemental boron present.

For the other samples tested there were no significant changes in structure or composition after treatment in H₂ up to 1000°C. The TiB₂ sample is nearly identical before and after treatment in H₂. The CaB₆ sample also seems unaffected by treatment in H₂. Several of the peaks for CaO overlap with those for CaB₆, thus making it difficult to discern if any CaO was actually formed. The formation of CaO is unlikely since the weight of the CaB₆ sample begins to level off at the end of the second temperature cycle under H₂.

Table 1. Expected weight changes based on the reaction of AlB_2 with O_2 and H_2 during the H_2 TGA experiments.

Acknowledgments

The assistance of J. Kropf and J. Vaughey in collecting the xray diffraction data is greatly appreciated. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38. Work performed at MRCAT is supported, in part, by funding from the Department of Energy under grant number DE-FG02-04ER46106. The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.