X-ray Absorption Spectroscopy (XAS) Characterization of 5 V Li[Co$_x$Ni$_{0.5-x}$Mn$_{1.5}$]O$_4$ (x=0, 0.1, 0.2, 0.4, and 0.5) Spinel Cathodes for Lithium Batteries

Argonne National Laboratory, Chemical Engineering Division, Electrochemical Technology Program
9700 S. Cass Ave, Argonne, IL, 60439 U.S.A.

Introduction
Higher-voltage batteries coupled with multi-electron transfer reactions can yield large amounts of energy storage per mole of battery material, and current research is aimed at exploring the electrochemistry and structures of such electroactive materials.

In the Li[Ni$_{0.5}$Mn$_{1.5}$]O$_4$ spinel electrode, which provides approximately 4.7 V against metallic lithium, the nickel and manganese ions are formally divalent and tetravalent respectively. Analogous to the charge-compensation mechanism in the novel layered Li[NiIICoIV]O$_2$ electrode [1], a Ni(II/IV) two-electron redox couple also occurs on cycling the spinel electrode (between 5.0 and 3.7 V) during which the Mn(IV) remains electrochemically inert.

Results and Discussion
In this work, a series of Co-substituted spinel compounds Li[Co$_x$Ni$_{0.5-x}$Mn$_{1.5}$]O$_4$ (x=0, 0.1, 0.2, 0.4, and 0.5) were synthesized by solution-precipitation methods and characterized. Rietveld profile refinements of powder XRD patterns (laboratory X-ray) for the cubic, cation-ordered spinels (space group P4$_3$32) were used to calculate the lattice parameter, a, and non-lithium (Ni, Co) occupancy of the 8c tetrahedral site. The lattice parameter decreases linearly with the amount of substituted Co in the spinel structure, consistent with solid-solution behavior and the direct substitution of the slightly smaller Co(II) ions for Ni(II) ions. Figure 1 shows the spinel structure and Figure 2 highlights the monotonic decrease in lattice parameter as a function of Co.

![Figure 1. Cubic spinel structure of Li[Co$_x$Ni$_{0.5-x}$Mn$_{1.5}$]O$_4$ (x=0, 0.1, 0.2, 0.4, and 0.5) materials.](image)

A solid-solution series exists between end members Ni and Co in Li[(Ni$_{0.5-x}$Co$_x$)Mn$_{1.5}$]O$_4$ (0≤x≤0.5). This result taken from XRD powder data suggests that the shrinkage with the amount of substituted Co is because CoII to NiII size difference (Δ 0.285 Å) is greater than MnII to MnIV (Δ 0.115 Å) change. Oxidation states of the various compounds were analyzed by XANES at the APS and the MRCAT (Sector 10).

![Figure 3. Ni K-edge XANES data.](image)

For the Mn metal center in the material, the MnIV moves towards MnII as x increases (Fig. 4) from x=0 to 0.5. Also a ~0.9 eV shift occurs in the series. This result confirms a charge transfer from the Co center to the Mn center as the content of Co increases.

![Figure 2. Change in lattice parameter (XRD) from Li[Co$_x$Ni$_{0.5-x}$Mn$_{1.5}$]O$_4$ (x=0, 0.1, 0.2, 0.4, and 0.5) materials.](image)
Predominantly Co$^{3+}$ was found in $x=0.5$ sample, and moves towards Co$^{2+}$ standard in $x=0.1$. The edge position for $x=0.1$ was equivalent to a Co$_2$O$_4$ standard where the average oxidation state is 2.67. Further, a unique EXAFS pattern was observed for Li[(Ni$_{0.4}$Co$_{0.1}$)Mn$_{1.5}$]O$_4$, which indicated a short-range ordered structure was present for this composition. Interestingly, this composition ($x=0.1$) also provides the best electrochemical cycling performance in lithium batteries as shown in Fig. 6, where the capacity and capacity fade are shown as a function of cycle number.

Conclusions

A series of spinels were synthesized with compositions Li[(Ni$_{0.5-x}$Co$_x$)Mn$_{1.5}$]O$_4$ (0≤x≤0.5). Superior cycling resulted for the $x=0.1$ composition. The XANES results show more Co$^{2+}$, Mn$^{3+}$ and Ni$^{2+}$ character and greater short-range ordering for $x=0.1$.

The charge-transfer interaction along the 12d octahedra sites occurs between Mn$^{4+}$ and Co$^{2+}$, to form Mn$^{3+}$ and Co$^{3+}$ in the cubic $P4_{3}32$ spinel structure, while the Ni$^{2+}$ was unaffected.

Acknowledgments

Support for Argonne National Laboratory from the U.S. Dept. of Energy’s Advanced Battery Program, Chemical Sciences Division, Office of Basic Energy Sciences is gratefully acknowledged. Use of the Advanced Photon Source was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Office of Science (DOE-BES-SC), under Contract No. W-31-109-Eng-38. Work performed at MRCAT is supported, in part, by funding from the Department of Energy under grant number DE-FG02-04ER46106.

References

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory (“Argonne”) under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.