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INTRODUCTION

Bubbles and foams are ever present in our daily lives: they are found in the insulation that protects our homes from climate
extremes, they often cushion the seats upon which we sit, they help us wash our clothes, and they are in the bread we eat and
the beer we may drink. Bubbles also play a significant role in geological processes. As magma, molten rock plus crystals and
dissolved volatiles (dominantly H>O), ascends from depth in the Earth where it was formed by partial melting, the drop in
pressure results in the exsolution of a gas phase and the growth of bubbles. Given a sufficient supply of volatiles the magma
can develop into a foam whose bubble walls are composed of silicate glass. The exsolution of bubbles can take only a few
seconds and is the driving force behind volcanic eruptions. The most violent volcanic eruptions can produce 1000's of cubic
kilometers of silicate foams, which are often broken apart by the expansion of the gas to create volcanic ash[1]. This causal
connection between bubble formation and volcanic eruptions inspired us to investigate the formation and growth of bubbles in
silicate melts with the aim of attaining a better understanding of volcanic eruption processes and the hope that this knowledge
will eventually aid in the prediction of devastating volcanic eruptions.

Most previous research on foamed natural and synthetic volcanic rocks measured bubble sizes and densities using two-
dimensional images[2-6] and converted these results into three dimensions using stereological formulas [7]. Although one
study utilized microtomography to investigate the bubble size distribution in basaltic rocks[8], no one has systematically
compared bubble size distributions obtained in two-dimensional sections with tomographic reconstructions. Because the
bubbles in these samples are not simple, convex spheres, but more complexly shaped volumes, there may be inaccuracies
introduced by the conversion of two-dimensional measurements into three dimensions. These inaccuracies might invalidate the
conclusions reached in previous research based upon two-dimensional image analysis. The goal of our research was to use x-
ray microtomography to compare the bubble size distribution measured from two-dimensional x-ray slices with the completely
reconstructed tomographic image of the sample.

Measurement of the bubble size distribution formed by the exsolution of a gas from a liquid is an excellent test for the
comparison of two-dimensional and three-dimensional imaging techniques. Many of the previous two-dimensional studies
found that bubble size distributions follow a power law and there exist at least three theories that predict the value of the power
law exponent for the distribution of bubble volumes [6, 9, 10]; the theories agree in their prediction that the power law exponent
for the cumulative bubble volume is 1. Thus, we not only compare the bubble size distributions measured in two and in three
dimensions with each other, but we can also make the comparison between the exponent predicted by theory and the
experimentally determined distribution.

METHODS AND MATERIALS
We synthesized two hydrated glasses; the first, AB24, was albitic in composition (NaAlSi,Os) and represents rhyolitic volcanic
melts. The second, SB4, was made from a natural basalt from the island of Stromboli, Italy, which was investigated because
basalts are the dominant form of volcanic rock on the Earth and because of the violent eruption that occurred at Stromboli on
April 5, 2003. We hydrated AB24 with 10.9 wt % H>O and SB4 with 5 wt % H,O; we performed sample hydration by melting
the glass + water mixtures in a piston cylinder apparatus using crushable alumina-Pyrex-NaCl assemblies at 1100 °C and 550
MPa for one hour followed by isobaric quenching to glass in less than 20 s. This procedure produced homogeneously hydrated

glasses containing no crystals. We foamed SB4 in the laboratory by heating it to 1050 °C in a miniature furnace. This glass
foam was mounted on a toothpick for x-ray microtomography. Sample AB24 was degassed at approximately 750 °C directly
on the beamline used for microtomography, BM-13 of GSECARS at the Advanced Photon Source, in a custom-designed boron-
nitride furnace (Fig. 1). The furnace is split in half along the horizontal plane defined by the pedestal upon which the sample
sits and during tomography the top half of the furnace can be removed for tomography. Tomography was performed by
collecting x-ray images during 180 degrees rotation; the sample was rotated at % degree resolution resulting in the collection of
a total of 720 images [11]. Transmitted x-rays were converted into visible light with a YAG phosphor screen that was imaged
with either a 5x or a 10x objective and a cooled a CCD camera with a spacing of 13.4 um/pixel and with a binning of 2x2. We
were able to achieve spatial resolutions ranging from 3.85 um/pixel to 6.63 pm/pixel by changing the objective lens and the
focal length between the lens and the CCD camera. The beam energies necessary for our data collection were between 15 and
20 KeV and counting times varied from 2.5 to 1.5 s per angular step. Reconstruction of the tomographic images was performed
using the Gridrec Fourier Transform algorithm producing 512 two-dimensional image slices, which together produce the three-
dimensional reconstruction of the sample. These images demonstrated that the bubbles in our foamed samples were not simple
spheres, but complexly shaped bodies due to the coalescence of multiple bubbles.

Because our goal was to compare bubble size distributions measured in two dimensions with those measured in three, we
analyzed two-dimensional image slices of the sample. For this analysis we selected a minimum of six image slices from near
the center of the sample and used the software ImagelJ (http://rsb.info.nih.gov/nih-image/). The smallest bubble we could image
was on the order of 100 um?, or 3 x 3 pixels. Bubbles were segmented by gray-scale thresholding followed by removal of
"holes" and "islands" and their two-dimensional areas were counted.



We performed three-dimensional analysis with the
software package BLOB3D written by Richard Ketcham
CCD Camera of the University of Texas. The smallest bubble we
could image was on the order of 1000 um?, which
corresponds to 3 x 3 x 3 voxels. The blobs in the image,
which represent the bubbles in the sample, were
segmented based upon gray scale thresholding followed
by "hole" and "island" removal. Importantly, we used no
L-Heating wire other type of filter or transformation during the
segmentation process. Large, complexly shaped blobs
Degassing sample  were eroded by removing 1 pixel from the surface, which
often produced multiple sub-blobs which were then
dilated back by addition of the surface pixels removed in
Thermecolple  the erosion step to produce a collection of small sub-
blobs. Often after dilation the surfaces of many blobs
touched each other. This behavior implies that two
separate bubbles exist in the sample, but that these
bubbles have no septum of glass separating them; such a
e — state is impossible and in every two dimensional image
Fig. 1. Schematic of furnace used for sample foaming and slice we observed glass septa between the bubbles with a
tomography (not to scale; the outer diameter of the furnace is 19 minimum thickness of at least 1 pixel. To separate large
mm). complex blobs into sub-blobs which were separated by
septa of at least voxel in thickness we first eroded the
large blob into sub-blobs and then dilated, thus producing many small blobs sharing surfaces. After dilation, the small blobs
with flat faces were eliminated, either by postponing if they were on the edge of the segmented volume investigated or deleting
if they were in the center of the volume and had flat edges. After removal of these anomalous blobs we reconnected all blobs
whose surfaces touched into larger blobs, typically producing 1 large blob and a few small blobs in the investigated volume.
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After all bubble areas or volumes were counted in either two- or three-dimensions (respectively), the cumulative distribution of
the bubble areas and volumes was plotted to determine the type of distribution (e.g., unimodal, multimodal, exponential, power-
law) for comparison with theory. The bubble sizes for the larger bubbles in each sample follow power law distributions whose
exponents were determined from the slopes on the cumulative distribution plots; uncertainties in these slopes are difficult to
estimate, but previous researchers [5] suggest that we can expect uncertainties of approximately 0.3.

RESULTS AND DISCUSSION

The cumulative distribution of bubble sizes in AB24 for the 2-dimensional area and 3-dimensional volume measurements are
shown in Fig. 2. For sample SB4 the corresponding 2-dimensional and 3-dimensional measurements are shown in Fig. 3. The
bubble sizes in AB24 display a power distribution in both 2- and 3-dimensional measurements; in both cases the value of the
exponent is close to 1. Analysis of 2-dimensional bubble areas in sample SB4 produced a power law distribution with an
exponent of approximately 1; the three-dimensional SB4 bubble volumes are also power-law distributed, but with an exponent
of approximately 1.4.

Given that the probability of
measuring a bubble with an area
greater than A, or P(>A), is
proportional to A™ and that
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the cumulative distributions into
non-cumulative ones through
differentiation. The next step is
to convert areas into radii and then convert the radii from two into three dimensions [6]. These radii are easily converted into
three-dimensional bubble volumes and the result is that P(>V) V@313 (56 9], This conversion demonstrates that the two-
dimensional measurements for sample AB24 accurately represent the true, three-dimensional bubble volume distribution. The
difference we find between the calculated and measured volume exponent for SB4 is slightly greater than our estimated
uncertainty. We think the discrepancy is due to over-counting of the largest bubbles in the two dimensional image slices. Only
if the 2-dimensional cumulative area exponent is increased to 1.6, far above the sum of our measured cumulative area exponent
and our estimated uncertainty, can the calculated and measured volume exponents become consistent. At the present we can
offer no explanation of the difference we find, other than the suggestion that the few two-dimensional slices we investigated

Fig. 2 Cumulative bubble area and volume distributions for AB24



were not statistically representative of the whole foam. The difference between the estimated and measured bubble volume
exponent for this sample demonstrates the utility of microtomography in accurately measuring bubbles in foams.
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The bubble volume distributions
we measured can be compared
against theories for bubble
growth, for aggregation, and for
random packing of spheres.
Gaonac'h et al. [5,9] present a
model for predicting the value
of the cumulative bubble
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exponent is 1 [9]. Comparison

of theory and studies of natural
rocks  demonstrated  close
agreement between theory and
measurement [5]. However, other models of bubble growth and coagulation also exist to explain the bubble size distribution.
Buldyrev et al. [10] discussed an aggregation model that explains the power-law distribution of objects in a “basin of attraction”
consisting of many hierarchical levels. Application of this model to bubble growth implies that a bubble growing in a larger
basin of attraction is larger than a bubble growing in a smaller basin and that the power law describing the cumulative volume
distribution resulting from this model has an exponent of 1. Finally, because the experimental foams approach the limit for
packing random objects (Fig. 2), one more model for consideration is that of packing-limited growth, in which randomly sized
spheres are placed into a volume; the resulting power-law distribution of sphere sizes indicates a cumulative volume exponent
also of approximately 1 [12]. All of the above models predict cumulative volume distribution exponents near 1. Our
measurements of sample AB24 agree, within uncertainty, with all these theories. On one hand this agreement is excellent, it
supports the validity of the bubble size distribution measurements in both two and three dimensions for this sample, but
unfortunately we cannot distinguish between the different growth mechanims of the various theories. Although at first
consideration the exponent for SB4, 1.4, does not seem significantly higher than those measured for AB24, comparison with the
theories briefly described above highlights the anomalous nature of the bubble size distribution measured in SB4. Our results
suggest that melt composition has an effect on the bubble volume distribution. Although we cannot definitively explain the
source of this higher exponent at this time, we can speculate that the different behavior of SB4 is related to its lower anhydrous
viscosity at the foaming conditions. Our study demonstrates the utility of x-ray microtomography as a tool for the study of the
bubble size distribution in silicate foams made by heating hydrated glasses at 1 atmosphere pressure. Analysis of the bubbles
requires careful attention because of the possibility of accidentally identifying separate bubbles (blobs) with large areas of
touching interfaces, which are physically implausible. Comparison of cumulative bubble area measurements made on a few
image slices with the complete cumulative bubble volume measurements made on the three-dimensional image indicates that in
some cases two-dimensional measurements yield accurate values of the power-law exponents, but in other cases they do not.
We attribute these differences in SB4 primarily to the complex shapes of the bubbles in our samples (only the small ones are
spherical) and to the limited number of two-dimensional slices we used to measure the bubble area distribution. Comparison of
our measured distributions with theories of bubble growth demonstrate agreement for AB24 but not for SB4, which displays an
enigmatically large cumulative bubble volume exponent.
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Fig. 3 Cumulative bubble area and volume distributions for SB4
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