High-pressure Synthesis of α -PbO₂-type Phase of GeO₂

V. Prakapenka,¹ G. Shen,¹ L. Dubrovinsky,² M. Rivers,¹ S. Sutton¹ ¹Consortium for Advanced Radiation Sources (CARS), The University of Chicago, Chicago, IL, U.S.A. ²Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany

Introduction

The high-pressure behavior of both the α -quartztype and rutile-type phases of GeO₂ has been studied intensively for the last three decades because of its industrial applications and its analogy to geologically important silica at relatively moderate pressures [1]. However, there are inconsistencies in the results of high-pressure phase transformations of GeO₂ reported by different groups.

Recent ab initio calculations predict the following sequence of phase transformations of GeO₂: rutile \Rightarrow (19 GPa) CaCl₂ \Rightarrow (36 GPa) α -PbO₂ \Rightarrow (65.5 GPa) Pa-3 (pyrite) [2]. Such phase transitions were either observed or theoretically predicted for silica SiO₂ [3-5]. A second-order transition from the rutile-type to the $CaCl_2$ -type phase of GeO_2 has been reported at 25-27 GPa and room temperature [6-8]. An orthorhombic high-pressure phase of GeO₂ was synthesized at pressure of ~50 GPa and 1300K by Ming and Manghnani [9]. However, according to Ming and Manghnani [9], the x-ray diffraction patterns of quenched samples are not the α -PbO₂ phase of GeO₂. Evidence of the coexistence of rutile-type and disordered Fe₂N-type structures of GeO₂ up to 32 GPa after heating of vitreous GeO₂ at ~1300K have also been reported [9, 10]. Compression of rutile-structured GeO_2 to ~36 GPa and subsequent laser annealing at ~1300K, as described by Haines et al. [7], also did not result in the transformation of CaCl₂-structured GeO₂ to the α -PbO₂-type phase. Laser heating above 43 GPa of both monoclinic structured (α -quartz type GeO₂ starting material) and CaCl₂-type structured phases (rutile or vitreous glass starting materials) resulted in a mixture of the CaCl₂-type and Fe₂N-type phases [11]. Ono et al. [8] observed only the CaCl₂-type post-rutile phase at pressures up to 45 GPa and temperatures up to 2300K. We can see that, despite extensive studies of GeO_2 , high-pressure polymorphism of GeO_2 remains unclear. No evidence of the theoretically predicted α -PbO₂ phase has been reported. This report provides information on in situ x-ray studies of phase transformations of GeO_2 at high pressures and temperatures to α -PbO₂-type GeO₂ from the CaCl₂structured phase. The detailed description of the results can be found in Refs. 12 and 13].

Methods and Materials

In our high-pressure experiments, α -quartz-type GeO₂ powder (Alfa, purity 99.9999%) was used. Various types of diamond anvil cells (membrane, symmetrical, and four-pin) were used for pressure generation up to ~60 GPa. The samples were loaded in the 100- to 150-µm holes in stainless steel or rhenium gaskets pre-indented to a thickness of 30 to 40 µm. Platinum powder of 1-3 wt% (Aldrich, purity 99.9%) was mixed with the GeO₂ in order to absorb the laser radiation and to measure pressures by using its equation of state [14]. Ruby luminescence was also used for pressure measurements at room temperature [15].

High-resolution angle-dispersive x-ray diffraction experiments were performed at GeoSoilEnviroCARS (GSECORS sector) at the APS by using an on-line image plate or a charge-coupled device (CCD) detector. The double-sided laser-heating technique with a laser spot of 20 to 40 μ m was used [16]. Details of the experiments are described elsewhere [17].

Results

The high-pressure orthorhombic phase of GeO₂ with CaCl₂-type structure (space group *Pnnm*, Z = 2) was synthesised from α -quartz-type GeO₂ powder pressurized to 36 GPa after laser heating for ~10 minutes at ~1600K. Upon further compression to 41 GPa and laser heating at ~1600K, the reflections from a new high-pressure phase appeared (Fig. 1). The relative intensities of the reflections corresponding to the CaCl₂-structured phase decreased with increasing pressure to 43 GPa. Above 44 GPa, the diffraction intensities from the new phase were greater than those from the CaCl₂-type phase, although co-existence of both phases was observed up to 60 GPa.

The new phase can be indexed as the α -PbO₂-type structure. To determine the stability field of the α -PbO₂-type phase, a reversal experiment was conducted, and the pressure was released from 44.5 to 41.3 GPa. After laser heating at ~1600K, the relative intensity of α -PbO₂ reflections decreased by a factor of ~15. In a separate experiment, heating of the monoclinic P2₁/c-type phase of GeO₂ at 39.5 GPa and ~1600K resulted in almost the same ratio of α -PbO₂-type to CaCl₂-type phases as the ratio for the decompressed and heated one at 41.3 GPa. Upon decompression at room temperature

FIG. 1. High-pressure-induced transformation of $CaCl_2$ -type GeO_2 to α -PbO_2-type phase after heating for ~20 minutes at different temperatures. Two bottom lines are theoretically calculated based on $CaCl_2$ -type and α -PbO₂-type structures.

from 60 to 29 GPa, the proportion of CaCl₂-type and α -PbO₂-type of GeO₂ was not changed, but transformation of the CaCl₂-type to the rutile-type structure was observed at ~27 GPa. At ambient pressure, a mixture of rutile-type and α -PbO₂-type structures were detected in almost equal proportions, with molar volumes of 16.65 ±0.05 cm³/mol and 16.41 ±0.08 cm³/mol, respectively.

Discussion

The crystal structure of the new phase of α -PbO₂ (*Pbcn* space group symmetry) can be described in terms of an hcp packing of oxygen with one-half of the available octahedral interstices occupied by germanium ions to form 2 × 2 zigzag chains of GeO₆ edge-sharing octahedra (Fig. 2). In the case of the CaCl₂ (*Pnnm*) or rutile (*P*4₂/*mnm*) structures, germanium ions are arranged in such a way as to generate straight chains of edge-sharing octahedra, which are corner-linked to form a 3-D network with hcp or distorted hcp arrays of oxygen, respectively (Fig. 3) [18]. The molar volume versus pressure data were fitted by using a third-order

Birch-Murnaghan equation of state with K' fixed to 4 [19]. The fit gave values of the bulk modulus for α -PbO₂ and rutile-type phases of 256 ±0.2 GPa and 247 ±0.3 GPa, respectively, in good agreement with the bulk modulus of 250 ±0.9 GPa for the rutile-type phase of GeO₂ reported by Haines [7].

In contrast to the rutile/CaCl₂-type second-order phase transition (when tetragonal symmetry breaks due

FIG. 2. Representation of the α -PbO₂-type structure in terms of edge-sharing octahedrals.

FIG. 3. Straight chains of edge-sharing octahedra with hcp (CaCl₂-type) or distorted hcp (rutile) arrays of oxygen.

to distortions of O-Ge-O bond angles), when the Ge ions reside at their previous equilibrium positions, the $CaCl_2 \Rightarrow \alpha$ -PbO₂ phase transformation is accompanied by a large displacement of the cations. The alignment of the octahedra along the c direction is lost, and the c lattice vector is almost doubled with respect to the CaCl₂ structure. The higher density of the α -PbO₂ structure (compared to the *Pnnm*-type arrangement) allows greater oxygen-oxygen separation [5]. The finite volume difference (1.4% at 44.5 GPa, for example) indicates its first-order character. This kind of transformation does not occur readily at ambient temperature, and it requires significant activation energy to induce cation displacements or, as has been proposed for SnO₂, it requires a rutile to α -PbO₂ transition via a $P112_1/a$ intermediate phase, which is formally identical to baddelevite [20, 21]. Our observation of the increasing proportion of the α -PbO₂ type phase with respect to the CaCl₂ structured phase, even at room temperature with increasing pressure, as well as our observation of the higher density of α -PbO₂ modification of GeO₂, lead us to conclude that the stable phase of GeO_2 in the pressure range of 44-60 GPa is in the α -PbO₂-type structure, which is in agreement with theoretical simulations [2]. The observation of the α -PbO₂ phase for GeO₂ supports a possible common sequence of high-pressure-induced transformation of group IV element dioxides (SiO₂, GeO₂, SnO₂, and PbO₂):rutile-type \Rightarrow CaCl₂-type \Rightarrow α -PbO₂-type [12].

Acknowledgments

This work is supported by the National Science Foundation (NSF) under NSF-EAR 0229987. The GSECARS sector is supported by the NSF Earth Sciences Instrumentation and Facilities Program and by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Geoscience Program. Use of the APS was supported by DOE BES under Contract No. W-31-109-ENG-38.

References

[1] H. Wang and G. Simmons, J. Geophys. Res. 78, 1262-1273 (1973).

[2] Z. Lodziana, K. Parlinski, and J. Hafner, Phys. Rev. B **63**, 134106-134113 (2001).

[3] K.J. Kingma, R.E. Cohen, R.J. Hemley, et al., Nature **374**, 243-245 (1995).

[4] L.S. Dubrovinsky, S.S.K., P. Lasor, et al., Nature **388**, 362-365 (1997).

[5] D.M. Teter, R.J. Hemley, G. Kresse, et al., Phys. Rev. Lett. **80**, 2145-2148 (1998).

[6] J. Haines, J.M. Leger, C. Chateau, et al., Phys. Rev. B 58, R2909-R2912 (1998).

[7] J. Haines, J.M. Leger, C. Chateau, et al., Phys. Chem. Miner. **27**, 575-582 (2000).

[8] S. Ono, K. Hirose, N. Nishiyama, et al., Am. Mineral. **87**, 99-102 (2002).

[9] L.C. Ming and M.H. Manghnani, Phys. Earth Planet. Inter. **33**, 26-30 (1983).

[10] L.G. Liu, W.A. Basset, and J. Sharry, J. Geophys. Res. **83**, 2301-2305 (1978).

[11] J. Haines, J.M. Leger, and C. Chateau, Phys. Rev. B **61**, 8701-8706 (2000).

[12] V.B. Prakapenka, L.S. Dubrovinsky, G. Shen, et al., Phys. Rev. B 67, 132101 (2003).

[13] V. Prakapenka, G. Shen, M. Rivers, et al., J. Phys. Chem. Solids (to be published, 2004).

[14] N.C. Holmes, J.A. Moriarty, G.R. Gathers, et al., J. Appl. Phys. **66**, 2962-2967 (1989).

[15] H.K. Mao, J. Xu, and P.M. Bell, J. Geophys. Res. **91**, 4673-4676 (1986).

[16] G. Shen, M. Rivers, Y. Wang, et al., Rev. Sci. Instrum. **72**, 1273-1282 (2001).

[17] V.B. Prokopenko, L.S. Dubrovinsky, V. Dmitriev, et al., J. Alloys Compd. **327**, 87-95 (2001).

[18] L.S. Dubrovinsky, N.A. Dubrovinskaia, V. Prakapenka, et al., High Pressure Res. (in press, 2002).

[19] O.L. Anderson, *Equations of State of Solids for Geophysics and Ceramic Science* (Oxford University Press, Oxford, England, 1995).

[20] J. Haines and J.M. Leger, Phys. Rev. B 55, 11144-11154 (1997).

[21] A.G. Christy, Acta Crystallogr. B 49, 987-996 (1993).