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Introduction
Crystalline materials are generally elastically anisotropic.

Even cubic materials are characterized by three elastic
constants, whereas isotropic elastic material has only two.
To define elastic anisotropy for the cubic materials, it is
common to use the elastic anisotropy factor S = S11-S12-
S44/2 or A = 2(S11-S12)/S44, where Sij are elastic compliances.
Materials become isotropic when S = 0 or A = 1. Recent
high-pressure ultrasonic and Brillouin scattering
experiments show that elastic anisotropy in MgO (fcc)
remains positive, decreasing only modestly with pressure. If
we extrapolate the anisotropy reported in these
measurements to higher pressures, S becomes zero at a
pressure of 11 GPa [1], 19 GPa [2], 21 GPa [3], and 21.5
GPa [4]. On the other hand, diffraction studies in the
Drickamer cell [5] show that MgO becomes elastically
isotropic at much lower pressures between 2 and 4 GPa.

To address the discrepancy in the anisotropy factor
between diffraction observations and ultrasonic or Brillouin
scattering data, we examined nonhydrostatic strain in MgO
up to 6 GPa at room temperature by using deformation-DIA
(D-DIA) [6] and monochromatic diffraction with a 2-D
charge-coupled device (CCD) detector. We used sintered
polycrystalline cubic boron nitride (cBN) anvils that are
x-ray transparent, which enabled us to collect complete
Debye rings (with the entire 360° azimuth coverage) with a
2θ range up to about 12°. By using high-energy x-rays
(small wavelengths), diffraction lines down to about 1 Å
can be recorded within this 2θ range. The ellipticity of the
Debye rings provided information on elastic lattice strains
due to the differential stress. An iso-stress (Reuss) model
was assumed, and anisotropy A was estimated from the
lattice strains. The correlation between anisotropy and the
differential stress level is discussed here.

Methods and Materials
Experimental details are described by Uchida et al. [7].

Two experiments were conducted, both with two
deformation cycles at two different pressures. In the first
run, pressure was increased to 2 GPa, and the differential
rams were advanced by 0.4 mm in total displacement
(0.2 mm for each ram). The pressure was then increased to
6 GPa, where the differential rams were advanced by
another 0.5 mm. Finally the ram load was released. In the
second run, pressure was first increased to 5 GPa, and both
rams were advanced by 0.35 mm. Then the pressure was

decreased to 1.5 GPa, followed by another 0.4-mm ram
advancement, after which the main ram load was released.

Results and Discussion
Figure 1 compares lattice strains of all three peaks —

111, 200, and 220 (italics denote crystal plane) — as a
function of the azimuth angle ϕ. The scattering in the 111
lattice distortion is mainly due to the low intensity of this
peak; hence, the autofitting routine was unable to determine
the peak center at certain azimuth angles. However, even
for this low-intensity peak, the majority of the data are quite
robust. At 2 GPa, it is clear that the lattice strain for 200 is
significantly greater than that for 220, while at 6 GPa,
lattice strains for 200 and 220 are identical. We observed
identical behavior in both runs. The systematic difference in
lattice strains between the 200 and 220 peaks is interpreted
as the anisotropy factor S (positive) being close to zero at
around 6 GPa, since over a large range of overall
displacement with various pressure and ram advancement
histories, lattice strains are consistently anisotropic at low
pressures (1.5-2 GPa) and isotropic at high pressures
(5-6 GPa). Duffy et al. [8] and Uchida et al. [5] observed
the same feature in the diamond anvil cell (DAC) and
Drickamer cell, respectively, with a slight variation in
pressure observed when the d-spacings of the 200 and 220
reflections were compared. Merkel et al. [9] also reported a
consistent anisotropy change around 8 GPa.

In lattice strain theory [10], both S = 0 (material becomes
elastically isotropic) and α = 0 (polycrystalline packing
approaches iso-strain [Voigt] limit) result in identical
strains ε(ϕ, hkl) for all Miller indices hkl, where the
parameter α denotes the boundary condition at grain
contacts and has a value between 0 (iso-strain) and 1 (iso-
stress). These two situations can be distinguished by
examining the strong correlation between anisotropy factor
S and the systematic differences in lattice strains ε(ϕ, hkl)
[11]. In other words, with increasing pressure, for S to cross
the zero value from positive to negative, the relative
magnitudes of the elastic compliances along certain
reflections must reverse (e.g., 111 [Γ = 1/3] to 200 [Γ = 0]
for MgO); hence, the relative lattice strain magnitudes
observed for these reflections should also reverse. In the
situation where anisotropic crystallites are compacted as a
Voigt solid under uniform differential stress, there should
not be any systematic difference in lattice strains at one
pressure, as can be seen in Fig. 1.



FIG. 1. Comparison of lattice strain at pressures of 2 and
6 GPa. The 111 reflection has the largest scatter due to its
low intensity. The 220 reflection could not be fully recorded
on the CCD because of geometric constraint. Note the
difference between 200 and 220 reflections. At 6 GPa, the
strains of both reflections are identical, which indicates the
anisotropy S is very close to zero.

When an iso-stress model is assumed, the nonhydrostatic
stress component can be written for 111 (Γ = 1/3), 200
(Γ = 0), and 220 (Γ = 1/4) peaks as follows:
εt(111) = (−t/3)[S44/2], (1)
εt(200) = (−t/3)[S11 − S12], and (2)
εt(220) = (−t/3)[1/4(S11 − S12)+3/8 S44]. (3)
By using any two of Eqs. (1)-(3), we can estimate A.
However, our data for the 111 reflection are not as reliable
as those for 200 and 220, because of the low peak intensity
and hence the large scatter in lattice strain determination.
Here we compare 200 and 220 peaks; the apparent
anisotropy A is given by
A = (3/4)(4εt(200)/[4εt(220) − εt(200)]). (4)

The estimated apparent anisotropy A from 200 and 220
reflections is plotted in Fig. 2(a). When this is compared to
differential stress data [7], we notice a correlation between
the differential stress level and apparent elastic anisotropy.
When the stress level is relatively low, the apparent
anisotropy measured from diffraction is in good agreement
with elastic anisotropy from ultrasonic measurements.
However, once the sample reaches a certain stress level, the
apparent anisotropy drops suddenly, offsetting the
ultrasonic data. The apparent anisotropy factor observed in
our data shows a nearly linear relationship with pressure,
with a slope much steeper than that of elastic anisotropy
[Fig. 2(b)]. Our data show excellent agreement with
diffraction measurements in the DAC [9], which extends to
much higher pressures. It is interesting to note the abrupt
change in slope for the apparent anisotropy around 6 GPa in
Merkel et al.’s DAC data [9]; beyond this point, A becomes
more or less a constant.
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FIG. 2. Anisotropy A versus pressure from (a) this study
and from (b) this study and previous diffraction studies. Up
to a certain stress level, anisotropy is in good agreement
with ultrasonic data. The anisotropy has offset from the
adiabatic values under high differential stress level.

Figure 3 shows the relationship between the differential
stress and each nonhydrostatic strain εt(hkl), for comparison
with Spetzler’s ultrasonic data [1]. The slope of each line
corresponds to the Young modulus for the given hkl. As the
pressure increases, the slope becomes steeper according to
the pressure dependence of the elastic constants. According
to Spetzler [1], the difference in the slopes (i.e., elastic
anisotropy) decreases with increasing pressure, so that all
three slopes become identical at 11 GPa. During the first
deformation cycle in run 1, the 200 and 220 peaks showed
good agreement with ultrasonic data. In the second
deformation cycle, both 111 and 220 data fell onto the 200
line (A = 1). In run 2, the high-pressure results showed
again that all the data for 111, 200, and 220 fell on the 200
line predicted by the ultrasonic data. The low-pressure
results showed some divergence, but the 220 data were still
closer to the 200 data throughout the experiment than what
the ultrasonic data predicted.

The discrepancy between our observation and the
ultrasonic data, as seen in Figs. 2 and 3, is best explained by
the yielding anisotropy of the crystallites in the bulk
sample. According to Hulse et al. [12], the yield strength of
single-crystal MgO is lowest in [100] at room temperature,
with the [110](110) slip system being the dominating
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FIG. 3. Comparison of Young modulus for each peak. Solid
lines show ultrasonic data [1]. Up to a certain stress level,
the stress and strain relationship is identical to ultrasonic
measurements, while all peaks shift toward strains of 200
peak under higher stress conditions. At high pressure, all
strains are identical.

deformation mechanism. Figure 4 shows a representation of
the differential stress-lattice strain relationship for Reuss
and Voigt models at a certain pressure. We observe lattice
strains and calculate differential stress by using known
elastic constants under Reuss or Voigt model assumptions.
At relatively low lattice strains (i.e., below point b1 in
Fig. 4), we are in the elastic regime and the stress-strain
relation is linear. Thus, the diffraction data can be used to
calculate a uniform differential stress t1, and the resultant
stress-strain relations are consistent with ultrasonic
measurements. The first deformation cycle in run 1 shows
this trend. However, as the differential stress levels increase
to the point where the [100] crystallites reach yielding but
the [111] and [110] crystallites do not, any differential
stress level above the [100] yield strength must be
supported by crystallites with other orientations (indicated
by the kink in the 200 curve at t2). At this point, the uniform
differential stress assumption breaks down because of stress
redistribution, and the Miller index dependence in the
lattice strain rapidly disappears. Thus the iso-stress model
underestimates differential stresses for crystallites with
[111] and [110] directions. As the sample is further
deformed, crystallites with [111] and [110] orientations
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FIG. 4. Cartoon diagram of differential stress–lattice strain
relationship for Reuss and Voigt models at a certain
pressure. Stress is not observable but is obtained from
strain(s) using elastic constants. At certain conditions, real
stress could vary from the obtained value.

may sustain much higher stress, so the index dependence on
the strains reverses, resulting in a reverse of the apparent
anisotropy. When the [110] crystallites yield, the stress in
the [111] crystallites is further enhanced (b3 in Fig. 4).
Since differential stresses are still calculated from the
strains based on the elastic (linear) relationship, we tend to
overestimate stress for 200 and underestimate stress for 111
and 220. In the Voigt model, it is assumed that lattice strain
is identical and thus a unique solution is obtained only from
b2. When the [100] crystallites reach yielding but the [111]
and [110] crystallites do not, differential stress for the [100]
crystallites is overestimated. When the [110] crystallites
reach yielding, differential stress for the [110] crystallites is
also overestimated. In any case, the Voigt model leads us to
overestimate differential stress. The offset seen in Fig. 2(a)
can be interpreted as slope change for 200 due to yielding
and stress enhancement for 111 and 220. If this is the case,
an abrupt change in the apparent anisotropy [Eq. (4)] due to
the yielding of [220] will occur. This is confirmed in
previous data [5, 8, 9] [Fig. 2(b)].

Finally, this discussion focuses on measurements of
elastic constants using the distortion of Debye ring (e.g.,
Refs. 13 and 9). Recently, the “radial diffraction” method
has been widely used to estimate elastic constants using the
DAC, by assuming a uniform differential stress level
throughout the sample. However, our results indicate that
one must be careful in controlling the differential stress
level to within the elastic regime for these purposes. When
the stress level is high and crystallites along certain
directions begin to yield, the elastic constants thus obtained
may be in error.
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