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Introduction
The use of charge-coupled device (CCD) arrays for

correlation spectroscopy began roughly a decade ago [1],
and the field of CCD-based x-ray photon correlation
spectroscopy (XPCS) is nearly as old [2-4]. Since then, a
number of important data collection and processing
techniques specific to multispeckle analysis have been
developed [5, 6]. Several advances beyond these are
underway, and more are undoubtedly ahead.

The field is beginning to attract a broad user base, and,
as such, it merits a distillation of the aforementioned
collective expertise into a small number of standard
software packages. Ideally, an XPCS data-reduction
program would be easily accessible to novice users while
simultaneously giving developers sufficient flexibility to
implement and test new algorithms within a unified
framework. It would generate “on-the-fly” results during
beam time as well as allow for careful analysis off site.

A first attempt at such an all-in-one software package,
called `coherent,` has been developed and tested heavily
at beamline 8-ID at the APS. It is now in regular use
there. Since correlation function normalization entails the
use of the static scattering cross section, `coherent` also
doubles as a small-angle x-ray scattering (SAXS) analysis
tool. This public-domain software is written in the Yorick
interpreted language [7]. Yorick is not only freely
available for several operating systems but is also
optimized for performing intensive mathematical
operations on large, multidimensional arrays of the sort
generated by CCD detectors.

Methods and Materials
A typical XPCS analysis in `coherent` proceeds

through the following steps:

Interactive setup
   Data set selection
   Acquisition detail confirmation
   Inactive/unwanted pixel removal
   Image partitioning
      Pixel-to-q conversion
      Selection of q-partitions for pixel averaging
Analysis
   Division of images into pixel segments
   Image segment processing
      Load segment out of all raw images

      Pixel response correction [8]
      Reorganization of “kinetics mode” slices [6]
      Multiple-tau correlation calculation
      Time-averaging of correlation function
      Correlation normalization
      Scattering cross-section calculation
      Time-averaging of cross section
      Correlation error estimate
      Average correlation within q-partitions
      Cross-section error estimate
      Averaging of cross section within q-partitions
      Scattering cross-section normalization
Results display
      Simple fitting of dynamics results
      Plot correlation function results
      Plot dynamics fit results versus q
      Plot static cross-section versus q
Saving of results to disk

Each step above nominally represents a module that
works independently of all others to the maximum degree
possible. This means that any unnecessary modules may
be skipped during execution. For example, if the user
selects SAXS analysis alone, then no correlation module
is run. Ideally, it also allows, transparently to all others,
the modification or addition of a module.

Results
Screen shots from `coherent` are shown in Figs. 1-4.

Discussion
The particular organizational structure above was

chosen for `coherent` largely because it provides several
speed advantages during analysis. First, Yorick’s
optimized array syntax can be fully utilized because all
readings of a given pixel are arrayed in memory at once,
as opposed to all pixels from a single frame being in
memory. Second, each image segment is read into
memory only once, minimizing delays due to disk access.
Third, time- and pixel-averaged result arrays are orders of
magnitude smaller than their raw data counterparts, so
computations (e.g., normalization) are applied to the
processed data whenever possible.

One subtlety arising from this scheme is that image
segmentation is necessary to array all readings of a given
pixel in memory at once (the first condition in the



FIG. 1. Acquisition detail confirmation. ‘coherent‘ is
configured to read ASCII data produced by the
acquisition software (spec, in this example) rather than to
ask the user to input each of the dozens of experimental
parameters.

FIG. 2. q-partitioning of a data set. XPCS partitions
(green) may be defined separately from SAXS partitions
(red).

previous paragraph). This is because most raw data sets
are several gigabytes in size, so it is unrealistic to assume
that all computers possess sufficient memory to contain
entire data sets. However, the loading of data from the
disk is especially slow when anything other than full rows
of pixels, which are stored contiguously on the disk, are
loaded together. On the other hand, ‘coherent‘ is also

FIG. 3. Static scattering cross section versus |q| at every
azimuthal angle in an XPCS data set.

FIG. 4. Azimuthal angle-dependence of single-
exponential decay fit parameters for correlation functions
at every |q| in an XPCS data set.

designed to allow users to select arbitrary q-partitions in
two dimensions of literally any shape (provided a
partitioning module able to handle such partitions exists).
This means that partitions and segments will not be
identical, and careful bookkeeping must be used to
properly average within q-partitions that span several
image segments. Fortunately, it also means that ‘coherent‘
is well-suited to potential future adaptation for parallel
processing machines.



the finished product bears far less resemblance to those
older packages than first intended, Lurio’s and especially
Lumma’s contributions have nonetheless been substantial.
M. Sutton, A. Rühm, and J.-F. Pelletier have also made
important additions to several modules and to the overall
philosophy of the package.
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Despite the increase in speed by a factor of about
10 that is provided by requiring all readings of a pixel to
be loaded into memory for correlation, there is a
drawback as well. Namely, this condition makes
`coherent` ill-suited to performing real-time analysis,
wherein correlations are calculated during acquisition and
updated upon the recording of each new frame, much as
with point correlators. Even after the technical challenges
currently facing such algorithms are overcome and real-
time analysis becomes the norm, `coherent` may still have
some utility, thanks to its image partitioning capabilities,
results display features, and overall flexibility.
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