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Introduction, Methods, and Materials 
 With the next generation of x-ray sources on the 
horizon, the ultrafast coherent manipulation and detection 
of x-rays is becoming an important field of instrumental 
development. A very promising approach to this task is to 
induce controlled changes to a crystal, by using a high-
power, short-pulse laser. X-ray diffraction from large 
crystals is described by the dynamical theory of 
diffraction, and its most successful extensions to deal with 
statically disturbed crystal are the wave-optical Takagi-
Taupin theory and the ray-optical eikonal theory. The two 
approaches have been synthesized [1-3] into an eikonal 
Takagi-Taupin theory and have been made explicitly time 
dependent in a unified space-time approach. 
 
Takagi-Taupin Theory 
 The dynamical diffraction theory converts the pertinent 
wave equation into an system of linear equations by  
use of a Bloch wave, and the derivatives in the wave 
equation are replaced entirely by wave vectors and 
frequencies. This yields an algebraic equation that can be 
solved to obtain the wave (here, electromagnetic) modes 
inside a crystal (lying on the so-called dispersion surface). 
The Takagi-Taupin theory [4-6] is an extension of the 
dynamical diffraction theory to deal with statically 
disturbed crystals. Recently [1, 2, 7-9], versions of the 
theory have been developed to address time-dependent 
disturbances as well. 
 In the Takagi-Taupin theory, the derivatives of the 
wave equation are replaced to a large degree by wave 
vectors and frequencies. However, a fraction of the spatial 
(and, in the case of the time-dependent theories, also the 
temporal) variability of the field amplitude is left to be 
taken up by the remaining spatial (and temporal) 
derivatives of the field amplitudes. The relative 
magnitude of this fraction is of the order of the electric 
susceptibility of the crystal (i.e., typically 10–6 to 10–5). 
Because the disturbance of the crystal cannot be larger 
than the susceptibility itself, and often is very much 
smaller, the derivatives of the field amplitudes within the 
Takagi theory are larger than is necessary to describe only 
the effect of the disturbance. For the same reason, the 
Takagi theory lacks the powerful visual language of 
dispersion surfaces that is developed in the standard 
dynamical diffraction theory. 
 As demonstrated by Authier and Balibar, the magnitude 
of the derivatives can be reduced by a judicious choice of 
the Bloch base vector [10, 11]. However, this wave vector 

can not be adapted to the changing conditions that the 
waves encounter in the course of propagation. 
 
Eikonal Theory 
 The eikonal theory is a contribution to the overall phase 
of the Bloch wave that describes the x-ray wavefield 
inside a crystal. Its gradient and time derivative are 
contributions to the x-ray wave vectors and frequency.  
In a perfect crystal, these contributions are constant. 
When, however, the crystal is disturbed in space or time, 
then these contributions are generally not constant and 
reflect momentum transfer and frequency shifts. In the 
original eikonal dynamical diffraction theory [12-16], it is 
assumed that the propagation of waves in the crystal can 
be described in terms of locally approximated perfect 
crystals, each with its dispersion surface. 
 
Results 
 
Eikonal Takagi-Taupin Theory 
 When the constant wave vector of the Authier-Balibar 
theory is made variable, it becomes possible to adapt the 
wave fields to the variable conditions in a disturbed 
crystal in such a way that the derivatives of the field 
amplitudes are minimized. It is, of course, not permissible 
to change the wave vectors at whim because they must be 
derived from a phase - the eikonal. Augmenting the Bloch 
wave of dynamical diffraction with a factor exp(iφ(r, t)) 
permits a mathematically correct way of controlling this 
phase. One may thus vary φ(r, t) in a numerical procedure 
to minimize the derivatives of the field amplitudes. These 
remaining derivatives are ignored in the original eikonal 
theory. Including them, instead, in a Takagi-Taupin-style 
differential retains the full wave-optical character of the 
theory. Because of the minimized derivatives, larger step 
sizes are possible in numerical simulations, and in some 
cases, a numerical simulation may become entirely 
unnecessary because the evolution of the field amplitudes 
can be read directly from the differential equations [2, 3]. 
Furthermore, the eikonal equation that minimizes the 
derivatives gives the best possible approximation to a 
dispersion surface in a disturbed crystal, making the 
visual language of standard dynamical diffraction theory 
available for disturbed crystals, as well. Because the 
theory is formulated in a unified space-time picture, all of 
the above applies to temporal, as well as to spatial 
disturbances of the crystal. The theory can therefore be 



used as a basis for the design of x-ray optical elements for 
the subpicosecond coherent control of x-rays. 
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