A Water-cooled Compound Refracting Lens as a White Beam Collimator

J. Y. Zhao, E. E. Alp, T. S. Toellner, W. Sturhahn, H. Sinn, D. Shu Advanced Photon Source, Argonne National Laboratory, Argonne, IL, U.S.A.

Introduction

The compound refracting lens [1-3] has proven to be a simple and efficient component for focusing and collimating hard x-rays. The vertical angular divergence of typical undulator radiation is around 12 μ rad full width at half maximum (FWHM) at third-generation synchrotron radiation light sources, while the angular acceptance of an ideal diamond (111) high-heat-load monochromator (HHLM) is about 8.0 μ rad for x-rays in a range of 20-25 keV. In order to improve the throughput of the diamond HHLM at these energies, a white beam collimator is necessary.

Methods and Materials

We built such a collimator [4] by using a water-cooled beryllium compound refracting lens.

Results

A 25% increase in spectral photon flux around 22 keV has been obtained (Fig. 1).

Acknowledgments

Use of the APS was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

References

[1] B. X.Yang, Nucl. Instrum. Methods A **328**, 578 (1993).

[2] A. Snigirev et al., Nature 384, 49 (1996).

[3] A. Q. Baron et al., J. Synchrotron Rad. 6, 953 (1999).

[4] J. Y. Zhao, E. E. Alp, T. S. Toellner, W. Sturhahn,

H. Sinn, and D. Shu, Rev. Sci. Instrum. 73, 1611 (2002).

FIG. 1. Angular distribution of the spectral flux of the collimator at 22 keV.