Application of Synchrotron Radiation to *In Situ* Measurement of Delayed Ettringite Formation

R. A. Livingston,¹ R. Clarke,² E. M. Dufresne,² W. Lowe,³ E. L. Williams, Jr.⁴

¹ Federal Highway Administration, McLean VA, U.S.A.
² University of Michigan, Ann Arbor, MI, U.S.A.
³ Howard University, Beltsville, MD, U.S.A.
⁴ Och Bidoe National Laboratory, Och Bidoe, TN, U.S.A.

⁴ Oak Ridge National Laboratory, Oak Ridge, TN, U.S.A.

Introduction

A potentially significant cause of concrete deterioration is cracking associated with the presence of the calcium aluminate sulfate mineral, ettringite [3CaO•Al₂O•3CaSO₄•32H₂O]. This phase starts to form a few years after the concrete is cast. The specific mechanism causing its delayed formation remains controversial. To develop a better understanding of this process, the Turner-Fairbanks Highway Research Center of the Federal Highway Administration, in collaboration with the University of Maryland, is performing a series of experiments in the laboratory on concrete specimens under controlled conditions. The primary damage data are obtained by using a standard expansion measurement method (ASTM C490-86) at specific time intervals. To correlate this damage with delayed ettringite formation, it is necessary to have time-resolved data on the mineralogy of the specimen. However, conventional methods (SEM-EDAX, powder diffraction XRD, or thermal analysis) require destructive sampling of the specimen. Also, these methods use very small sample sizes ~1 mg, which may not be representative of the heterogeneous concrete specimen. Energy dispersive diffraction using a synchrotron radiation source offers the possibility of a non-destructive method that can scan the mineralogy of a significant volume of concrete.¹

Materials and Methods

The specimen consisted of a $2 \times 8 \times 8$ cm slab sawn from a concrete prism that had shown expansion on the order of 1% after 200 days.² A white light beam (20 < E < 120 keV) was used to

illuminate the specimen. The energy dispersive diffraction spectra were taken in transmission mode using a CZT detector mounted at a 20 of 10°. Typical voxel size was on the order of 1 mm³. A rectangular region $20 \times 5 \times 2$ mm through the specimen was scanned at a rate of 1 voxel each 10 s.

Results

A total of 252 spectra were obtained over a period of 6 h. However, because of calibration problems, it was not possible to associate the observed diffraction peaks with known concrete mineral phases.

Discussion

The feasibility of using synchrotron radiation to perform nondestructive energy dispersive diffraction on concrete specimens has been demonstrated. Future studies will investigate ettringite distribution in concrete specimens as a function of time. Methods development will focus on scanning software that will minimize the amount of beamtime used to scan aggregates within the specimen.

References

¹ C. Hall, S.L. Colston, A.C. Jupe, S.D.M. Jacques, R.A. Livingston, A. Ramadan, A.W. Amde, and P. Barnes, Cem. Conc. Res. **30**, 491-495 (2000).

² E.O. Ramadan, A.M. Amde, and R.A. Livingston, ACI Mat. J., in press (2001).