Inelastic X-ray Scattering Study on the Collective Dynamics in Liquid Hg

S. Hosokawa,^{1,2} H. Sinn,³ W.-C. Pilgrim,¹ F. Hensel,¹ A. Alatas,³ E. E. Alp³

¹Institut für Physikalische-, Kern-, und Makromolekulare Chemie, Philipps Universität Marburg, D-35032 Marburg, Germany

²Laboratoire de Cristallographie, CNRS, F-38042 Grenoble Cedex 9, France

³SRI-CAT, Advanced Photon Source, Argonne National Laborarory, Argonne, IL, U.S.A.

Introduction

Recently, the investigation of collective dynamics in liquid (1-) metals was considerably encouraged by the use of inelastic xray scattering (IXS). It permits studies of the Q dependence of excitations in the meV range, which has so far been exclusively the domain of inelastic neutron scattering (INS). Results of recent IXS experiments on 1-Li^{1,2} and Na,³ as well as INS measurements for l-Rb⁴ and l-Cs,⁵ revealed that the positions of the phonon peaks in the low Q range lie on a line whose energies are higher than predicted by classical hydrodynamics. Namely, a so-called positive dispersion is observed in these systems. The most fundamental approach to a theoretical understanding of the positive dispersion in simple monatomic fluids is through the application of generalized hydrodynamics.6 In the high-frequency limit, the sound velocity is no longer given by the compressibility of the system but ruled by elastic moduli, as in a solid. The low Q limit of the high-frequency sound velocity of a simple isotropic liquid can be estimated through the interatomic potential of the system. The potentials of l-alkali metals are attractive around the nearest neighbor distance, whereas that of l-Hg is purely repulsive. Thus, for this large contrast, 1-Hg is a good candidate to prove a validity of the generalized hydrodynamic theory. Due to the extremely high absorption cross section of Hg for thermal neutrons, however, the microscopic dynamics of 1-Hg has never been experimentally investigated, not even at room temperature. In this paper, we report our recent results of $S(Q,\omega)$ for l-Hg at room temperature obtained from a high-resolution IXS experiment.

Methods and Materials

The IXS experiments were carried out by using the newly developed inelastic scattering diffractometer installed at beamline 3-ID-C. The energy of the incident x-rays was around 21.657 keV, and the energy resolution function has a pseudo-Voigt shape with a width of 2.15 meV. The Hg sample was contained in a single-crystal sapphire cell with a wall thickness of 0.25 mm.⁷ It is highly transparent to x-rays and contributes neither inelastic nor elastic to the scattering intensity. Strong x-ray absorption by the Hg sample is suppressed by using a sample thickness of only 0.02 mm. The cell was placed in a vessel with Kapton windows, which was filled with 1 bar of He gas.

Results and discussion

Figure 1 shows $S(Q,\omega)$ normalized to S(Q). Full circles represent the experimental data with error bars. At $Q \le 17 nm^{-1}$, propagating excitations were clearly identified as shoulders at both sides of the quasielastic line. The spectra in this figure demonstrate that the dynamics of 1-Hg is dominated by longitudinal propagating modes, analogous to 1-alkali metals [1-5]. A detailed analysis of the phonon dispersion and the width of the quasielastic line will be given in a subsequent paper.⁸

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

References

- ¹ H. Sinn et al., Phys. Rev. Lett. **78**, 1715 (1997).
- ² T. Scopigno et al., Phys. Rev. Lett. 85, 4076 (2000).
- ³ W.-C. Pilgrim et al., J. Non-Cryst. Solids 250-252, 96 (1999).
- ⁴ D. Pasqualini et al., J. Non-Cryst. Solids 250-252, 77 (1999).
- ⁵ T. Bodensteiner et al., Phys. Rev. A 45, 5709 (1992).

⁶ J. P. Boon and S Yop, *Molecular Hydrodynamics* (McGraw-Hill, New York, 1980).

⁷ K. Tamura, M. Inui, and S. Hosokawa, Rev. Sci. Instrum. **70**, 144 (1999).

⁸ S. Hosokawa, H. Sinn, W.-C. Pilgrim, F. Hensel, A. Alatas, and E. E. Alp, Phys. Rev. Lett., in preparation.