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Dynamical behavior of atoms:

solids

phase transitions
diffusion
nanostructures
rotational excitations
superconductivity

liquids

melting processes
viscosity
atomic clusters
glasses

gases

velocity distributions
confined systems

(Fe-sample in DAC)

(levitated Al
2
O

3
-sample)

(methane escapes ice-chlathrate)
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➢ The nucleus is not at rest

 energy/momentum conservation

 velocity in gases
 vibrations in solids

⇒ recoil energy shift

⇒ Doppler shift
⇒ phonon excitation/annihilation,
       recoilless absorption

recent reviews of Nuclear Resonant Spectroscopy:
       E. Gerdau and H. deWaard, eds., Hyperfine Interact. 123-125 (1999-2000)
       W. Sturhahn, J. Phys.: Condens. Matt. 16 (2004)
       R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation:
          Basic Principles, Methodology and Applications, Springer (2004)
       W. Sturhahn and J.M. Jackson, GSA special paper 421 (2007)

The nucleus as a probe:

➢ NRIXS – Nuclear Resonant Inelastic X-ray Scattering
             (a.k.a. NRVS and NIS)

 local vibrational density of states

 applications include determination of sound velocities and
         thermodynamic properties
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➢ conventional role of nuclei

➢ but in some cases

 majority carrier of the atomic mass

 carries the positive electric charge

 negligible scattering cross section:

(nucleus) / (atom) =

     (Z m/M)2  ≈ 10-7

         (Thomson)

 dynamics of the nucleons results
      in well-defined resonances with

 nuclear resonant scattering may dominate

 nuclear resonances are extremely narrow

(nucleus) / (atom) ≈ 103

Γ / E  ≈ 10-12

The two faces of nuclei:
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Excitation of the 57Fe nuclear resonance:

SMS

NRIXS

fixed, isolated nucleus

14.4125 keV

4.66 neV ∣e〉

nucleus & electronic interaction or external fields

14.4125 keV E

S(E) ≈μeV

...
...

nucleus & simple
         lattice excitation

14.4125 keV E

S(E)
Mössbauer absorption

phonon side band

∣g〉

≈10meV

∣e,3/2〉

∣e,1/2〉
∣e,-1/2〉
∣e,-3/2〉

∣g,-1/2〉

∣g,1/2〉

∣g〉∣0〉
∣g〉∣1〉
∣g〉∣2〉

∣e〉∣0〉
∣e〉∣1〉
∣e〉∣2〉
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Scattering channels:

initial state     →     intermediate state     →     final state

||||

lattice nucleus & core electrons

incoherent coherent inelastic

(negligible)

coherent elastic

NRIXS SMS

W.Sturhahn and V.Kohn
     Hyperfine Interact. 123-124 (1999)

 Nuclear Resonant Inelastic X-ray Spectroscopy  —   6 California Institute of  Technology



Cross section for nuclear excitation:

iron metal:

W.Sturhahn, J.Phys.: Condens. Matter 16 (2004)

~ nuclear resonant cross section

~ width of the nuclear resonance

~ probability density for phonon excitation

E

S(E)
on resonance:

off resonance:

(0.1 < f < 0.9)

~ Debye energy

(0) = 560 
pe

(E) ≈ 0.0002 
pe


pe

 ~ photoelectric cross section
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The time discrimination trick:

The excited nucleus decays incoherently with its natural life time .

 = ℏ / 

141 ns  for 57Fe

time

log(intensity)

nonresonant scattering events
                 (100 MHz)

measured events (100 Hz)

detector noise (0.01 Hz)
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NRIXS, experimental setup:

➢ x-ray pulses must be sufficiently
            separated in time

➢ detectors must have good time resolution
        and excellent dynamic range

➢ monochromatization to meV-level required
➢ energy is tuned around nuclear transition
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NRIXS, bcc-Fe:

✰ the partial phonon DOS is extracted
                    from the spectrum

phonon annihilation phonon creation

V.G.Kohn et al., Phys.Rev. B 58 (1998)

W.Sturhahn,
       Hyperfine Interact. 125 (2000)

M.Hu et al.,
      Nucl.Instrum.Methods A 428 (1999)
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Interpretation of NRIXS spectra:

➢ NRIXS spectra directly provide the Fourier transform
         of the self-intermediate scattering function

➢ In the quasi-harmonic approximation the
        partial projected phonon density-of-states
           is obtained by a multi-phonon expansion

W.Sturhahn and V.G.Kohn, Hyperfine Interact. 123/124 (1999)
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Information from NRIXS spectra:

➢ directly from the data, S(E)

 temperature

 mean square displacement

 kinetic energy

 average force constant

➢ quasi-harmonic lattice model

 partial phonon density of states

 Debye sound velocity

 Grüneisen parameter

k
E

R



~ wave number of nuclear transition
~ recoil energy 
~ mass density

 isotope fractionation

M
Δm
k

B

T

~ mass of resonant isotope 
~ isotope mass difference
~ Boltzmann's constant
~ temperature
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Methods:

neutron scattering
neutron; energy,
  momentum defined

large coupling to nuclei,
  small coupling to electrons

neutron; analysis of
  energy, momentum

requires large
  samples; strong
  proton scattering

non-resonant x-ray scattering
photon; energy,
  momentum defined

coupling to electrons only photon; analysis of
  energy, momentum

excitation of
  electrons, phonons

nuclear resonant scattering
photon; energy,
  momentum defined

coupling to resonant
  nuclei only

photon; analysis of
  emission time

resonant isotope
selectivity

|in

|out
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Isotopes for nuclear resonant scattering:

larger scattering
       strength

symbol area is proportional to the
        nuclear resonant cross section

easier timing

more absorption less intensity

detector resolution

APS, ESRF bunch separation
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Time structure of synchrotron radiation:

detector dead time δt

time

bunch separation

detector dead time and bunch separation
   determine the detectable counts in NRIXS.
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Target applications:

➢ perfect isotope selectivity & complete suppression of nonresonant signals

➢ excellent sensitivity (1012 nuclei in the focused beam)

✰ proteins and other large molecules

✰ materials under high pressure

✰ nanostructures

P > 1Mbar
T > 2000K

57Fe in
myoglobin
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Probes have improved models of Earth's interior:

 seismic studies

 gravity and magnetic fields

 cosmo-chemical models

 geodynamical modeling

 material properties
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Sound velocities in (Fe,Mg)SiO
3
 orthoenstatites:

J.M. Jackson, E.A. Hamecher,
  W. Sturhahn, 
Eur. J. Mineral. 21 (2009)

✰ the Debye sound velocity average is
      obtained from the partial phonon DOS

M. Hu et al., Phys. Rev. B 67 (2003)

✰ excellent agreement with
      traditional methods

W. Sturhahn and J.M. Jackson,
      GSA special paper 421 (2007)

Fe
0.2

Mg
0.8

SiO
3

Fe
0.07

Mg
0.93

SiO
3

Fe
0.13

Mg
0.87

SiO
3
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Diamond anvil cells for Mbar pressures:

✰ A force applied to the
     diamond anvils can
       produce extreme
      pressures in a small
        sample chamber.

sample

100 μm
50 mm
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NRIXS on hcp-Fe:

✰ hcp-Fe is the major component of Earth's core 

C.A.Murphy, J.M.Jackson., W.Sturhahn, B.Chen: Geophys. Res. Lett. 38 (2011)
C.A.Murphy, J.M.Jackson., W.Sturhahn: J. Geophys. Res. 118 (2013)

energy (meV)
200 40 60 80

ph
on

on
 D

O
S

✰ the phonon DOS of hcp-Fe shows
      a fairly well defined scaling behavior

✰ the scaling gives the Grüneisen parameter

      with  γ0= 1.98(2)  and  q = 1
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NRIXS and melting:

✰ The Lindemann criterium:

C.A. Murphy, J.M. Jackson., W. Sturhahn, B. Chen,
      Phys. Earth Planet. Inter. 188 (2011)

✰ from the phonon DOS of hcp-Fe we
      get at high temperatures

✰ melting temperatures
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Biophysics applications:

✰  iron has several functions in biology

➢  oxygen metabolism

57Fe

ATP production
oxygen transport (myoglobin, hemoglobin)

➢  electron transfer (cytochrome-f)

➢  cellular signaling (with NO, O
2
, CO)

✰  NRIXS determines the complete
      frequency spectrum and vibration
      amplitudes of the probe 57Fe located
      at the active site of the protein.

Myoglobin

J.T. Sage et al., Phys.Rev.Lett. 86 (2001)

Nitrosyl-Fe(II)-tetraphenyl-porphyrin

B.K. Rai et al., Biophys.J. 82 (2002)

57Fe

➢  active centers in enzymes, e.g.,
      N

2
-genase, H

2
-genase
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Phonon modes in proteins:

Cytochrome f is an electron-transfer
   membrane protein and part of the
   cytochrome b-f complex of
   oxygenic photosynthesis

Myoglobin is an oxygen
  ligand-binding protein, e.g.,
  found in muscle tissues

K.L. Adams et al.,
         J. Phys. Chem. B 110 (2006)
B. Leu et al.,
         J. Phys. Chem. B 113 (2009)

 Nuclear Resonant Inelastic X-ray Spectroscopy  —   23 California Institute of  Technology



Polarization of phonon modes from NRIXS:

✰ [Fe(TPP)(2-MeIm)] is a model system for heme proteins

B.K. Rai et al.,
    Phys.Rev. E 66 (2002)

out of plane

in plane

x rays
 “out of plane”

x rays “in plane”
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Selection rules:

➢ The polarization of a particular phonon gives the direction of
           its contribution to atomic displacement.

➢ Phonon polarizations perpendicular to the x-rays
             have   k·e = 0   and are excluded.

➢ NRIXS spectra are described by

➢ Excluded are

       longitudinal phonons (p-waves) moving perpendicular to the x-rays;

       transverse phonons (s-waves) moving in the direction of the x-rays.
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Phonons in tracer layers:

T.Ruckert, W.Keune, W.Sturhahn, M.Y.Hu, J.P.Sutter, E.E.Alp: Hyperfine Interact. 126 (2000)
W.Keune, S.Hong, M.Y.Hu, J.Zhao, T.S.Toellner, E.E.Alp, W.Sturhahn, T.S.Rahman, B.Roldan Cuenya: Phys. Rev. B 96 (2018)

57Fe0.03Cr0.97

57Fe

Cr(11)

57Fe(1)

Cr(11)

57Fe(1)

56Fe(5)

56Fe(5)

Cr(11)

57Fe(1)
56Fe(10)

✰ Fe films embedded in Cr show
     significant reduction of longitudinal modes

✰ resonant modes around 23 meV are
     strongly expressed
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Fe layers on W:

S. Stankov et al., Phys. Rev. Lett. 99 (2007)

✰ Fe films on W also show a significant
     reduction of longitudinal modes

✰ but resonant modes around 20 meV are
     weakly expressed
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Nano-clusters:

✰ self-assembled 57FePt nano-clusters
     show very different phonon DOS
        for bcc and fcc structure

bcc structure

AFM TEM

AFM TEM

fcc structure
B. Roldan Cuenya et al., Phys. Rev. B 80 (2009)
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In conclusion:

➢ the “three energy scales” make NRIXS work

✰ under extreme conditions (pressure, temperature)

✰ at active centers of proteins and enzymes

✰ about nano-structures

➢ NRIXS provides a wealth of vibrational information

➢ in particular we obtain

✰ the partial phonon density of states

nuclear level width phonon energies nuclear transition energy

neV meV keV
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Ende
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