

Exploring Emergent Electronic Behavior with Intermediate Energy X-Rays at the New Sector 29

Jessica McChesney

IEX Beamline: Scientific Case

Interacting electrons in the valance band lead to novel physics

- Spinon excitation
- Charge ordering (stripes)
- Deconfined magnetic monopoles

This emergent behavior arises when several energy scales are of the same size:

- Coulomb repulsion
- Valance bonding
- Kinetic energy of the mobile electrons
- Magnetic interaction energy

Probe the electronic structure via

Resonant Elastic Scattering Angle-Resolved Photoemission Spectroscopy

Resonant Elastic Soft X-Ray Scattering (RSXS)

RSXS spatial correlations/ordering

Photon in – photon out Measures Q = k_{in} - k_{out}

- L-edge of transition metal (d electrons)
- M-edge of rare-earths (f electrons)
- K-edge (N to S)

Wave length well matched

• λ ~ 0.5 to 5 nm

Increased Bulk Sensitivity - longer e⁻ escape depth

Electromagnetic Variable Polarizing Undulator (EM-VPU)

- 12.5 cm period; 38 periods
- 10.5 mm fixed gap
- Quasiperiodic Reduction in higher order light
- LP_{Horizontal}: 250 eV 2500 eV
- LP_{Vertical} and CP: 440 eV 2500 eV

Quasiperiodicity

Optics:

Energy Filtering: M0: planar (0.8° outboard) M1: planar (3.8° outboard)

Monochromator (VLS-PGM):

M2: internally cooled planar, (downward) Gratings: VLS (0.8° upward)

C-branch (ARPES focus: 21 µm x 4 µm)

M3A: elliptical (6.8° outboard) M4A: elliptical (2.2° downward)

20

D-branch (RSXS foucs: 160 µm x 30 µm) M3R: spherical (1.3° outboard) M4R: spherical (1.7° downward)

Variable Line Space Plane Grating Monochromator (VLS-PGM)

Grating	k ₀ (line/mm)	Resolving Power (E/∆E)	Flux (photon/sec)	Energy range
HEG	2400	50,000	2×10^{10}	250 – 2,000 eV
MEG	1200	10,000 2,500	2×10^{11} 2×10^{9}	250 – 2,000 eV 2,000 – 3,000 eV
LEG	400	2,500	4×10^{12}	250 – 2,000 eV

Endstations

Angle-resolved photoemission spectroscopy (ARPES)

- Scienta R4000 electron analyzer energy: 1.8 meV, angle: 0.01°
- Low temperature 6-axis goniometer (T<7K)

Resonant elastic scattering

- Kappa diffractometer with delay line area detector
- Closed cycle cryostat T<20K
- TES detector

First commissioning results February 2013

Diagnostic tools:

Slit 1A: is a movable aperture and electrically isolated Wire monitor: both horizontal and vertical Tungsten Mesh:

DiaGon: undulator diagnostic, image pink beam

DiaGon: Imaging Pink Beam

Si(111): 2800eV

Timeline:

2014-1 cycle: finish installation, put beam on mono, test gas cell
2014-2 cycle: characterize beamline optics and insertion device
Complete endstations and begin commissioning
2014-3 cycle: Preliminary experiments
2015-1 cycle: Begin GU program (50%)

Acknowledgements

Beamline Design and Development

Juan Carlos Campuzano Peter Abbamonte

XSD

George Srajer Rubin Reininger Jonathan Lang Richard Rosenberg Mark Servantes Tim Roberts

AES

Mohan Ramanathan Christa Benson Mike Fisher Nate Poindexter Undulator Design and Testing Mark Jaski Liz Moog Efim Gluskin Isaac Vasserman Aimin Xiao Boris Deriy Joe Xu Marty Smith

Beamline Installation and Implementation

AES-MOM vacuum group AES-MOM mechanical group

BCDA: Dohn Arms and Tom Walsh

Survey and Alignment