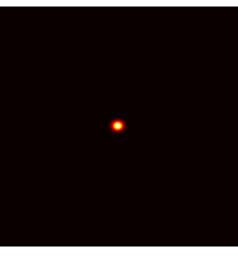


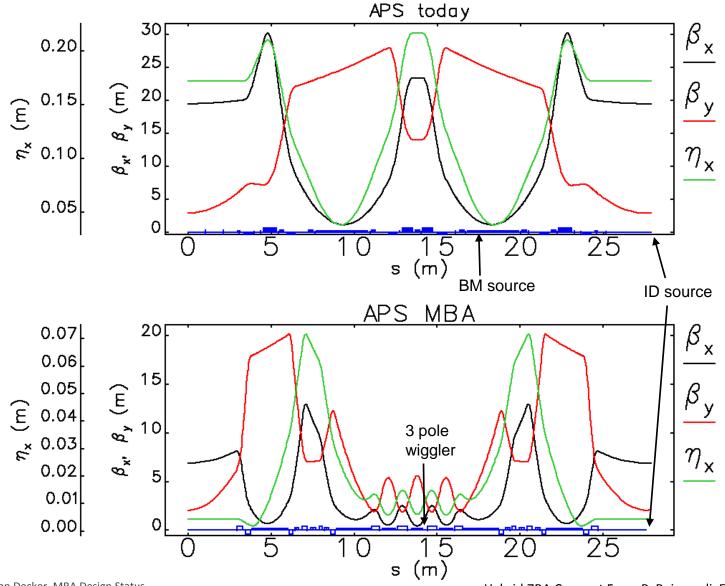
Outline

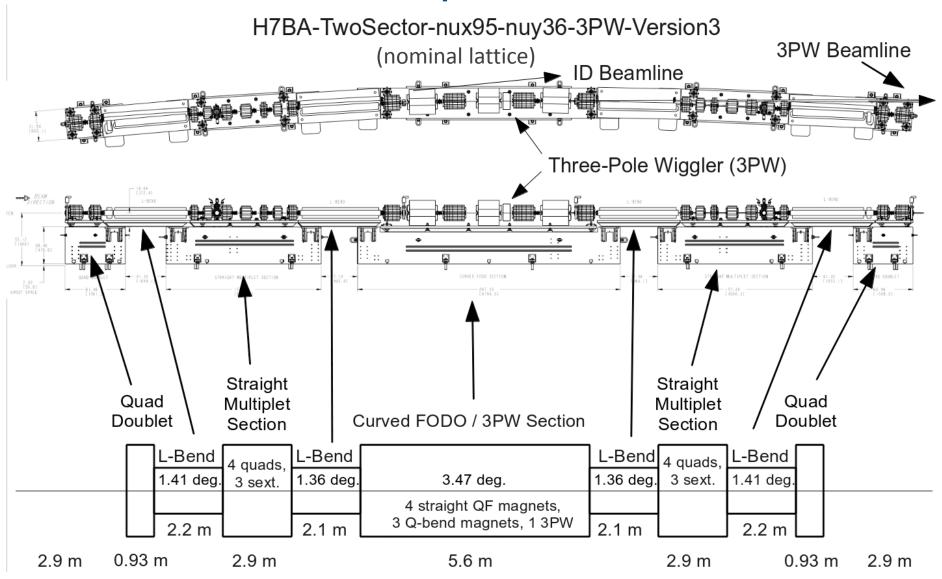
- MBA Overview
- Three-pole wiggler concept
- Technical reviews
- Outlook


APS MBA improvement

Dramatically enhance the performance of the APS as a hard x-ray source

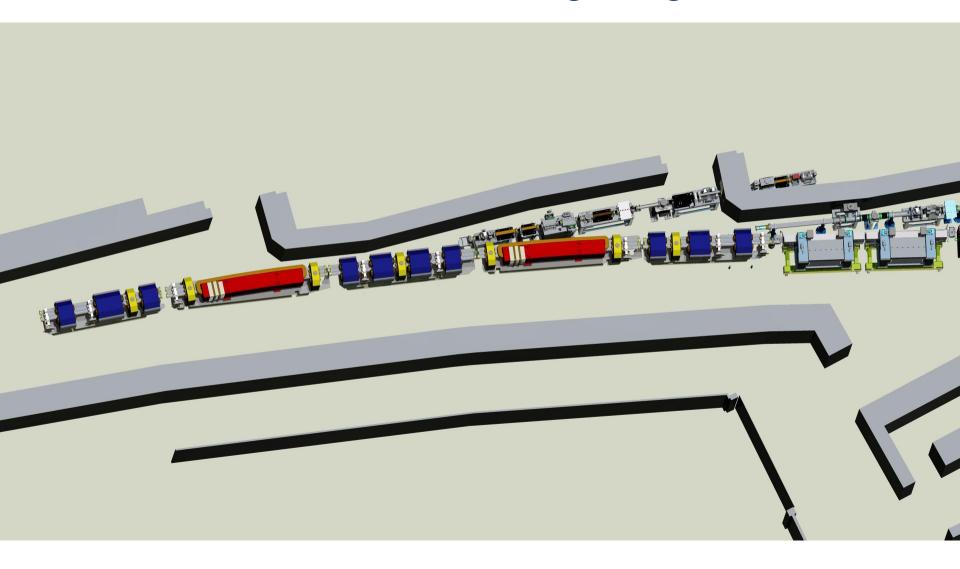
APS Now


Particle Beam Profiles


MBA

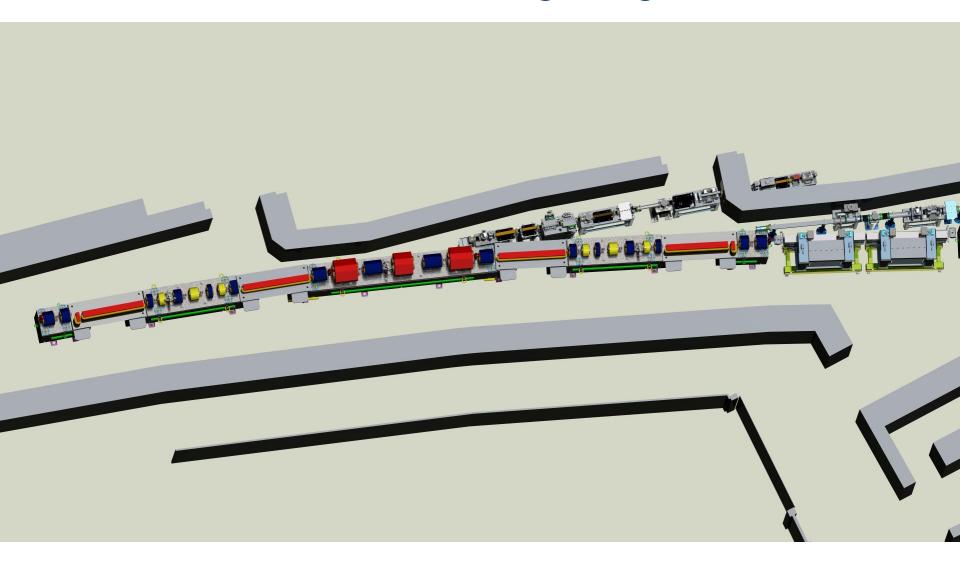
Comparison inspired by C. Steier, LBNL Glenn Decker, MBA Design Status

MBA Lattice for the APS Tunnel

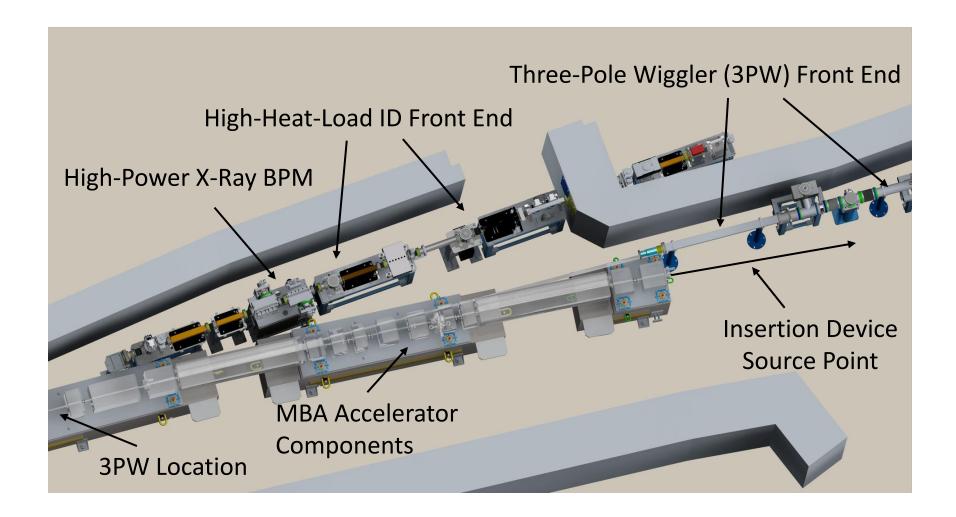

APS MBA Accelerator Implementation

High-Level Machine Properties

	APS Now	MBA
Beam Energy	7 GeV	6 GeV
Beam Current	100 mA	200 mA
Effective Emittance	3100 pm-rad	65 pm-rad
Sectors	40	40
Circumference	1104 m	1104 m
RF Frequency	352 MHz	352 MHz
Minimum Bunch Spacing	11.4 ns	11.4 ns
Energy Spread	0.096%	0.095%
Dipoles / Sector	2	7
Quads / Sector	10	16
Sext. / Sector	7	6
Fast Correctors / Sector	1 to 2 / plane	4 / plane


Current APS Storage Ring

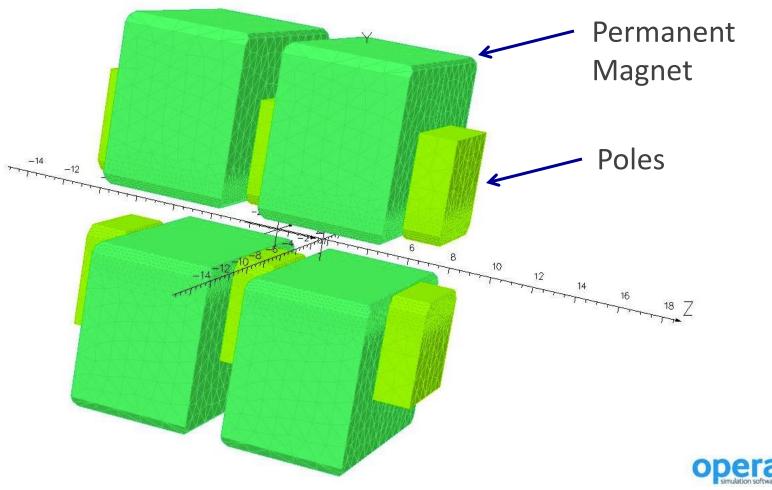
Glenn Decker, MBA Design Status


APS MBA Storage Ring

Glenn Decker, MBA Design Status

In-Tunnel Arrangement of Components

APS-MBA High-Level Performance Goals

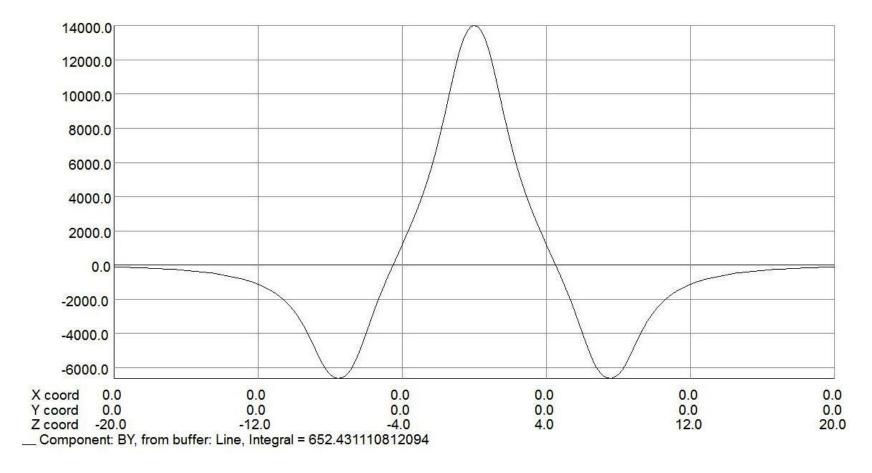

- More than two orders of magnitude increase in brightness at ID sources over a wide range of hard x-ray energies
- Significant improvement of coherent flux
- All insertion device beamlines including canted lines supported
- All BM beamlines supported, with greater flux and harder xrays using three-pole wiggler source
- At least a factor of 2 increase in hard x-ray flux (BM and ID)
- 48 to 324 uniformly-spaced bunches supported

MBA ID Source Characteristics

Table 2.4: Parameters for ID source points for H7BA-TwoSector-nux95-nuy36-3PW-Version3

κ	σ_t ps	ϵ_x pm	Ü	β_x m			σ'_x μrad	0	J	$\frac{\sigma_{\delta}}{10^{-4}}$	$ au_{10^{th}}$ h	
$N_b =$		• •				• •	15.3 nC			_		
1.00	53	47.9	47.9	6.8	2.2	18.2	2.7	10.2	4.7	1.02×10^{1}	1.92	14.4
$N_b =$	81	f_b	= 22.0	\mathbf{MHz}		$Q_b = 9$	$9.1\mathbf{nC}$					
1.00	53	45.0	45.0	6.8	2.2	17.7	2.6	9.9	4.5	9.93	3.01	13.4
$N_b =$	162	f_{ℓ}	$_{5} = 44.$	0 MH :	Z	$Q_b =$	$4.5\mathbf{nC}$					
1.00	50	42.9	42.9	6.8	2.2	17.3	2.5	9.7	4.4	9.75	5.20	11.6
$N_b =$	216	f_{ℓ}	$_{5} = 58.$	7 MH :	Z	$Q_b =$	3.4nC					
0.40	51	55.7	22.1	6.8	2.2	19.6	2.9	6.9	3.2	9.74	5.70	9.5
$N_b =$	324	f_{ℓ}	$_{5} = 88.$	0 MH .	Z	$Q_b =$	2.3nC					
0.11	53	66.1	7.1	6.8	2.2	21.4	3.1	3.9	1.8	9.79	5.70	6.3

Concept for the 3-pole wiggler


Design uses 4 permanent magnets and 6 vanadium permendur poles
 By E. Moog

Glenn Decker, MBA Design Status March 26, 2014 12

3 Pole Wiggler

Field on beam axis

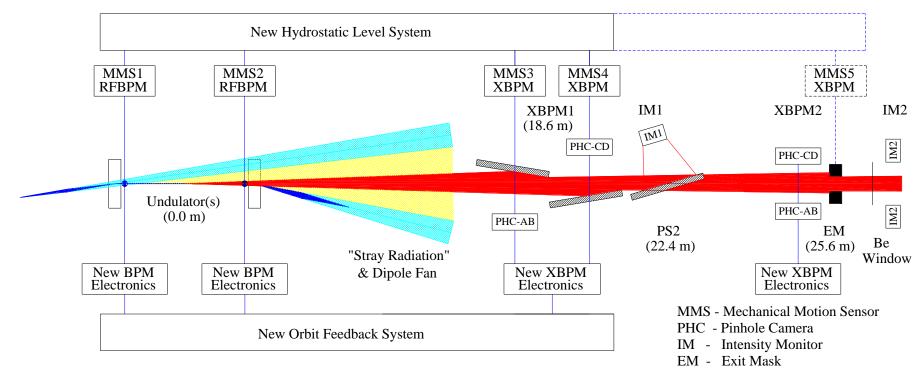
Field under center pole = 14029 G; field under side pole = -6624 G Wiggler period $^{\sim}$ 12 cm, K > 15, $\epsilon_{\rm c}$ > 30 keV, K/ γ $^{\sim}$ 1.3 mrad

Glenn Decker, MBA Design Status

March 26, 2014

Ongoing Technical Reviews

APS-U Upcoming Project Reviews


MBA Vacuum System Review	March 25, 2014
MBA Storage Ring Removal and New Storage Ring Installation Plan Review	March 27-28, 2014
MBA Magnet and Mechanical Support Review	April 1-2, 2014
MBA Power Supplies Review	April 3-4, 2014
MBA Pulsed Injection Systems Conceptual Design Review	April 8, 2014

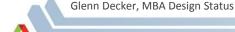
Previous APS-U Project Reviews

MBA Diagnostics and Controls Review	March 20-21, 2014
MBA Beam Physics Design Review	February 13-14, 2014
MBA Magnet Measurement Workshop	January 28-29, 2014
Working Assumptions Document Review	December 16-18, 2013
MBA M1 Pre-Prototype Magnet Design Review	November 26, 2013

Orbit Stabilization Diagnostics - Undulator Source

Orbit Stabilization System for the APS-U includes a new orbit feedback system and improved electron and x-ray beam position monitors. R&D program at sector 27 will test many of these new diagnostic systems this summer.

MBA Diagnostics / Controls Conceptual Design Review* Recommendations - March 20-21, 2014


The new diagnostics installation in BL27 is an excellent idea. It will be used for the new RF bpm system, GRID-XBPM, etc. It would also be beneficial to install good x-ray diagnostics further down the beamline so that the measurements of these diagnostics can be used to cross-correlate with the storage ring diagnostics.

Committee members:

Jim Sebek – SLAC / SSRL Mark Rivers – University of Chicago Barry Lai - ANL Dave Gurd – SNS (retired)

Outlook

- Technical reviews complete April, 2014
- Prototype activities for magnets, vacuum, etc. ongoing
- Conceptual Design Report preparation April-May
- Cost estimates now starting in earnest
- Director's review late summer
- Ready for CD-1 review September, 2014

Home

Registration &

Program/Agendas

Deadlines

Poster Submission

Travel and Lodging

Awards

Social Events

Exhibitors List

Download poster

Guidelines

- Registration FAQ
- Exhibitors
- Workshop organizers

Facilities

- APS
- CNM
- EMC

2014 Users Meeting

User Science: discoveries for tomorrow

Advanced Photon Source | Center for Nanoscale Materials | Electron Microscopy Center

Cross-Facility Workshop B—The APS MBA Upgrade: Introduction and Scientific Opportunities

Tuesday, May 13, 2014

Location TBD

Organizers: Dean Haeffner and Jonathan Lang (APS)

jump to agenda »

OVERVIEW

Session I: Introduction to the APS MBA Upgrade (morning)

This workshop is a series of tutorial lectures designed to educate the participant on technical subjects related to the APS MBA Upgrade proposal. Talks will cover accelerator design (from a user's point of view), optics, detectors, and X-ray theory that are relevant to understanding and fully utilizing the extremely high brilliance provided by the low-emittance storage beam after the MBA upgrade.

Session II: APS MBA Upgrade Science Opportunities (afternoon)

This session will feature talks highlighting the science opportunities provided by a storage ring approaching the diffraction limit. Subjects would include CDI/ptychography, XPCS, wide-field imaging, nanoprobe imaging, and other subjects that particularly benefit from low emittance. Speakers would be instructed to be speculative and forward thinking. The goal of the session is to inspire the audience to project their own needs onto the capabilities of an MBA based APS by showing exciting examples and, consequently, to further enhance the science case for the APS MBA Upgrade.