25 APRIL 2018

APS ALL-HANDS MEETING

APS UPGRADE UPDATE

JIM KERBY PROJECT MANAGER, APS UPGRADE

APS-U – WHY?

Electron emittance reduced from 3000 pm-rad to 42 pm-rad, approaching diffraction-limited photon emittance for mid-keV X-rays

- \Rightarrow 2 orders of magnitude higher brightness and transverse coherence
- \Rightarrow smaller spot size for microprobes
- \Rightarrow round beams

Argonne

APS-U LATTICE

- Storage ring consists of 40 Sectors. Each with 33 arc magnets; 27.6 meters / sector
- Sector arcs consist of nine modules, mounted upon three large support structures:
- Vacuum systems integrated with magnets, supports, insertion devices, front ends.
- 5 Straight sections in Zone F
 - Injection/extraction hardware, RF accelerating cavities and bunch lengthening system
- Assembly and installation readiness:
 - Each module pre-assembled, components aligned, full system tests prior to installation

Vacuum Section undergoing bakeout testing

Vibration measurements in 375

First APS-U Production Magnet – Q1 from Danfysik

HOW? – PROPOSED FEATURE BEAMLINES

Location	Name	Title	Science Lead	Technique
28-ID	CHEX	Coherent High-Energy X-ray Sector for In Situ Science	Robert Winarski Brian Stephenson	In situ, surface high-energy coherent scattering
4-ID	Polar	Polarization modulation spectroscopy	Daniel Haskel	Magnetic spectroscopy
20-ID	HEXM	A High-Energy X-ray Microscope	Sarvjit Shastri Jon Almer	High-energy microscopies & CDI
8-ID	XPCS	Development of a Small-Angle X-ray Photon Correlation Spectroscopy Beamline for Studying Dynamics in Soft Matter Wide-Angle X-Ray Photon Correlation Spectroscopy and	Suresh Narayanan	Small-angle XPCS
		Time-Resolved Coherent X-Ray Scattering Beamline	Alec Sandy	Wide-angle XPCS
33-ID	Ptycho	PtychoProbe	Volker Rose	Ultimate resolution, forward scattering ptychography/spectromicroscopy
19-ID	ISN	InSitu Nanoprobe Beamline	Jörg Maser	<i>In-situ</i> , forward scattering ptychography/spectromicroscopy Long working distances
9-ID	CSSI	Coherent Surface Scattering Imaging Beamline for Unraveling Mesoscopic Spatial-Temporal Correlations	Jin Wang Jiang Zhang	Coherent GISAXS, XPCS
34-ID	ATOMIC 3DMN	Atomic – A beamline for extremely high resolution coherent imaging of atomistic structures 3D Micro & Nano Diffraction	Ross Harder Jon Tischler	Diffraction microscopy & CDI Bragg CDI Upgrade of current 34-ID

First X-ray test of a prototype compact wavefront sensor for *in situ* measurement and monitoring of beamline wavefront

HOW? - INSERTION DEVICES SCOPE

- A total of about 70 insertion devices are expected to be operational at the start of the APSU operations
- Majority of the IDs are based on hybrid permanent magnet undulators, optimizied for need
- Existing experience in building and operating planar and superconducting undulators at APS will be capitalized to the maximum extent
- All straight section vacuum chambers have been designed with full integration of the IDs

SCUS

- Full magnetic modelling of the SCU of period 1.65cm confirms assumption of possible maximum fields.
- Conceptual design review of a long cryostats completed for March 2018; builds on Helical SCU
- SCAPE device, if successful, will provide a unique source and build on APS expertise

APS-U REVITALIZES OUR FACILITY AS A WHOLE

We have successfully modeled and measured many components and systems, and completed an exceptional Preliminary Design Report

- Nearly all components of the storage ring have been prototyped
- Construction contracts on magnets, beamlines, and optics have started
- Key staff have been added
- Engineering models have been created to assist in the continued best engineering of the accelerator, front ends, and beamlines

•

We are well positioned to move into the next phase of the Project thanks to your sustained efforts ... so far.

APS-U FUNDING PROFILE – APPROXIMATE

DRAFT FY18 LLP UPDATED REQUEST

Previously approved FY18 LLP in green

Including 10% contingency on FY17, 35% on remainder keeps total within \$89.5M limit set of LLP procurements

"Potential FY19 add" should procurements be favorable under development

- M1, M2, M4 magnets
- Bipolar power supplies
- Libera BPM equipment
- ASL Technical equipment
- Septum magnet production
- DLM B Plinth and associated
- Long Beamline Civil Construction

Control Account / CD-3B Package	FY17	FY18	FY19	Grand Total
U.U2.03.03.01 - Magnets	\$3,057,901	\$17,851,690	\$3,260,877	\$24,170,468
Q1/Q2 Quadrupole Magnets	\$3,057,901			\$3,057,901
8-pole Corrector Magnets		\$2,148,129		\$2,148,129
Q3, Q6 Quadrupole Magnets		\$4,063,587	· · · · · · · · · · · · · · · · · · ·	\$4,063,587
Q4, Q5 Quadrupole Magnets		\$4,063,587		\$4,063,587
Sextupole Magnets		\$7,576,387		\$7,576,387
M1 Dipole Magnet				\$0
M3 Dipole Magnet			\$3,260,877	\$3,260,877
U.U2.03.03.02 - Support Structures and Alignment Systems		\$0	\$4,437,260	\$4,437,260
DLM A Plinth and associated			\$4,437,260	\$4,437,260
U.U2.03.03.03 - Magnet Power Supply Systems		\$9,173,180	\$0	\$0
Unipolar Power Supply Components		\$9,173,180		\$9,173,180
U.U2.03.03.04 - Vacuum System		\$0	\$3,746,526	\$3,746,526
Multiplet/Doublet vacuum chambers			\$1,722,362	\$1,722,362
L-bend chamber components			\$936,342	\$936,342
Fast Corrector chambers			\$1,087,823	\$1,087,823
U.U2.03.03.05.02 - Bunch Lengthening System	\$251,405	\$347,726	\$2,822,850	\$3,421,981
Bunch Lengthening Cavity and Cryomodule	\$251,405	\$347,726	\$277,576	\$876,707
Bunch Lengthening System Cryoplant			\$1,354,112	\$1,354,112
Bunch Lengthening System Cryogenic Distribution System			\$1,191,162	\$1,191,162
U.U2.03.03.06 - Injection / Extraction Systems		\$0	\$1,414,270	\$1,414,270
High Voltage Pulsers			\$1,414,270	\$1,414,270
U.U2.03.03.07 - Diagnostics		\$374,212	\$0	\$374,212
RF BPM Components (Relay Racks)		\$374,212		\$374,212
U.U2.04.02 - Global Beamline Support	\$354,990	\$588,481	\$887,102	\$1,830,572
Optics, Stability Components	\$354,990	\$588,481	\$887,102	\$1,830,572
U.U2.04.04 - Beamlines		\$4,579,000	\$0	\$0
ASL Hutch Procurement		\$2,269,000		\$2,269,000
ASL Beamline Critical Components	-	\$2,310,000		\$2,310,000
U.U2.05.02 - Front Ends		\$3,907,200	\$2,150,017	\$6,057,217
High head load front end components (all FEGidCop)		\$1,053,163	\$1,130,985	\$2,184,148
Canted front end components (all FE GlidCop)		\$663,911	\$423,488	\$1,087,399
X-ray Beam Position Monitor Components (GlidCop)		\$791,593		\$791,593
FE Equipment Protection Systems & Phnumatics		\$1,165,441		\$1,165,441
ASL CUFE		\$233,092	\$595,544	\$828,636
U.U2.05.03 - Insertion Devices		\$4,267,084	\$4,502,995	\$8,770,079
Magnetic Structures		\$1,840,199	\$4,502,995	\$6,343,194
Insertion Device Vacuum Chamber Components		\$2,426,885		\$2,426,885
Grand Total	\$3,664,296	\$41,088,572	\$21,807,628	\$66,560,496
Contingency @35%	\$366,430	\$14,381,000	\$7,632,670	\$23,296,174
Count Total La dudina Continuana	64.000 700	655 ACO 570	620 440 207	600 040 FOF

RECENT AND UPCOMING REVIEWS

Review	Date Planned
Procurement readiness review – HHLFE Masks and Shutter - LLP	May 2018
APS-U Injector Plan Preliminary Design Review	May 15, 2018
Lattice Review	May 16-17, 2018
Final Design Review Insertion Device Vacuum Chamber	May 2018
Procurement Readiness Review - EMI Cabinets - LLP	May 2018
S1, S2 and S3 Procurement Readiness Review	May 2018
Procurement readiness review – Planar ID Magnet - LLP	June 2018
Procurement readiness review – Canted Undulator Front Ends Masks and Shutter - LLP	June 2018
Procurement readiness review – Fast Corrector Chambers	July 2018
Procurement readiness review – IDVC system - LLP	July 2018
Final Design Review - Longitudinal Feedback System	Aug 2018
Procurement Readiness Review – DLM A Plinth and Associated Equipment	Aug 2018

Risk workshop is May 1-2 at ANL

Reviews conducted in the last month

- ID vacuum chamber extrusions FDR and PRR held 3/1/2018 Report Received, Recommendations being addressed
- APS-U SCU Cryostat Preliminary Design Review held March 21, 2018 Report Received, Recommendations to address
- APS-U Q3-Q6 Procurement Readiness Review held March 23, 2018 Report Received, Recommendations to address

APS Insertion Device Magnet Final Design Review held March 27-28, 2018 - Report Received, Recommendations to address

Argonne

APS-U PROJECT SCHEDULE

PROJECT CHALLENGES

- How to we maximize the science of the facility in the APS-U era?
- How do we take best advantage of the existing APS infrastructure and equipment and apply our limited resources to the most critical and challenging needs?
- How do we best utilize collaborating laboratories and industry such that they can help us succeed?
- How do we shift from creation and handling of single items / components to those of tens, hundreds, or thousands?
- How do we best design, build, and install equipment such that the resulting facility can be efficiently operated to best advantage?
- How do we maintain our sponsors trust in our ability?
- How do we do this all safely?

While not complete (yet), I believe we can and will answer these questions

MOVING FORWARD – A STARTER LIST

- APS-U, PSC, and ANL Leadership are working extremely hard with our sponsors to deliver the best APS-U possible
- We (you!) and our partners are working to deliver technical solutions, delivering the most 'bang for the buck'
- We are developing new processes in planning, procurement, and acceptance to handle the quantities involved
- We communicate regularly and transparently
- We learn from our mistakes and those of others
- We are aware of our work area, and that of our colleagues

Any Project brings challenges – the payoff is a once (or twice) in a lifetime opportunity

SAFETY

Taking the last item, and making it first...

- Focus on the task at hand, being aware of our work, and the environment around that work is the only way we will safely succeed.
- This is critical.
- The weekly ORPS reports (safety incidents from the National Lab system) consistently include accidents involving poor planning; poor work area preparation; poor de-energization practices; and scope creep.
- PLEASE...for <u>your</u> sake...do not become a statistic.

https://www.youtube.com/watch?v=IRYv_2JRCT0&feature=youtu.be

