

APS Upgrade Project Update

Stuart Henderson

Director, APS Upgrade Project Argonne National Laboratory

All Hands Meeting December 14, 2016

APS Upgrade CD-3B Approval

Advanced Photon Source Upgrade At Argonne National Laboratory CD-3B ESAAB – Equivalent Review

Approval:

Based on the information presented above and at this review, Critical Decision-3B, Approve Long Lead Procurement, is approved for APS-U.

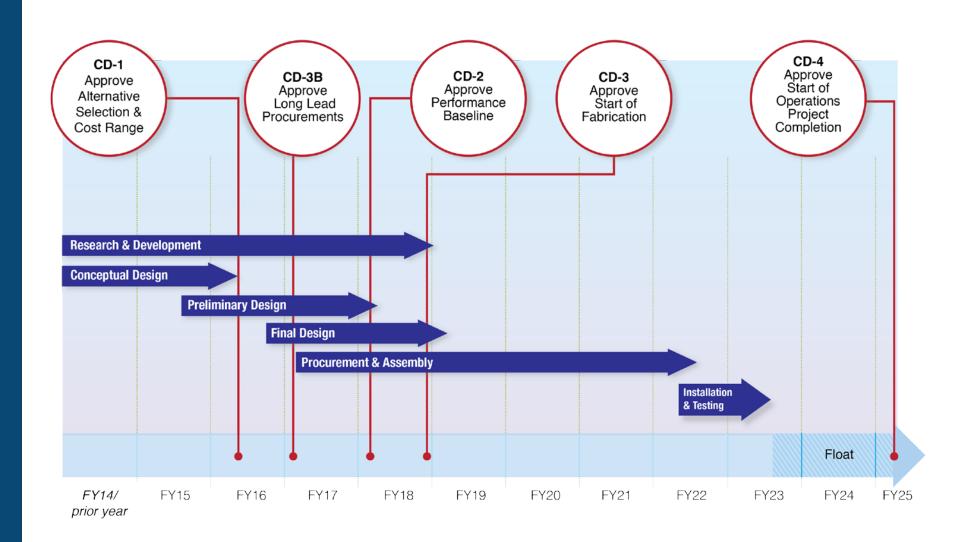
Franklin M. Orr, Jr., Project Management Executive Under Secretary for Science and Energy

Date

CD-3B Strategy

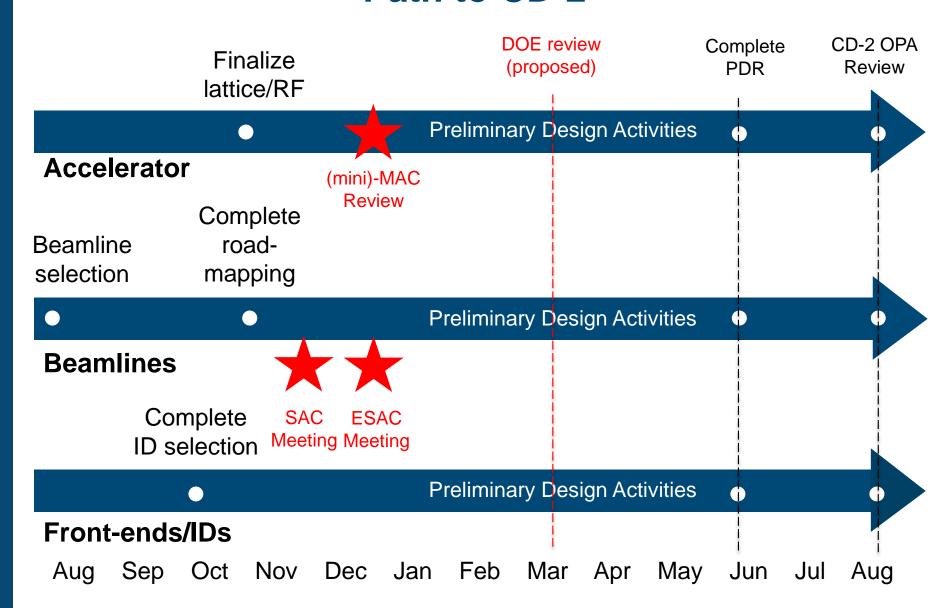
Our overarching goal: Timely completion of the Project within an extremely competitive environment, while minimizing risk

- APS-U received long-lead procurement (LLP) authority for a set of advance procurements to be let in FY17-19
- CD-3B approval provides the Project with the means to:
 - Relieve critical path
 - Reduce/mitigate risks.
 - Maximize flexibility with respect to funding
- LLP Plan totals \$89M including contingency
 - Accelerator scope: magnets and support structure, power supplies, vacuum systems, diagnostics hardware etc.
 - Experimental facilities scope: initiate early buildout of a beamline, optical components, etc.
 - Front-end/ID scope: Front-end components (glidcop), ID vacuum chambers, magnetic structures



APS Upgrade Project Funding

- Administration's Request was for \$20M in FY17, flat w.r.t.
 prior years
- Senate appropriations (passed) had \$50M for APS-U in FY17
- House markup (not passed) included \$35M for APS-U
- Continuing Resolution holds APS-U funding flat through late April
- Strong support within DOE:
 - Littlewood, Streiffer, Henderson met with Steve Binkley, DOE Deputy Director for Science Programs



APS Upgrade Project Schedule

Path to CD-2

Key Decisions: Accelerator

Accelerator Lattice Finalization

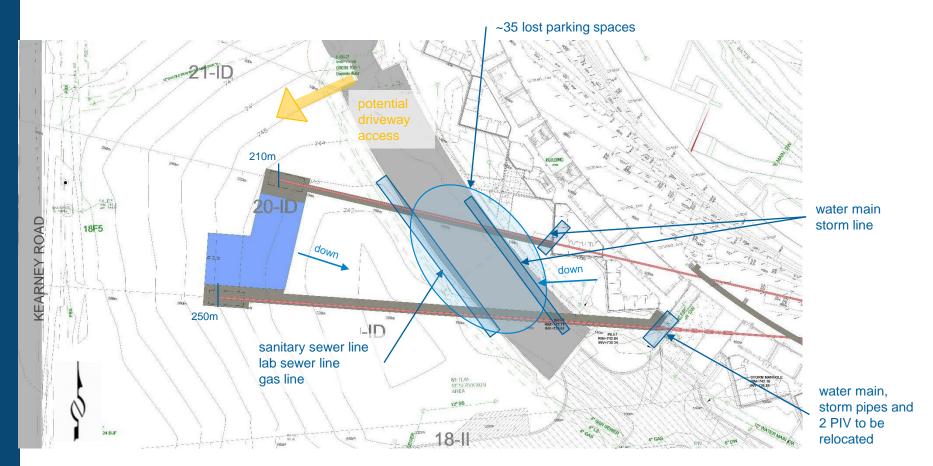
- We are adopting a higher-performing "41-pm reverse-bend lattice"
 - ~60% brighter than 67-pm lattice
- Good bang for the buck: little difference between new and previous nominal 67-pm lattice in terms of technical implications and cost

Storage Ring RF System

- Short lifetime in timing-mode motivated consideration of a lowerfrequency RF system.
- A low-frequency rf (LFRF) system produces longer bunches which reduces detrimental effects
- Completed full analysis of scientific impact, technical, cost, schedule implications
- Bottom line: We are sticking with our baseline plan to use the existing 352 MHz system

Selected Beamline Proposals

	<u> </u>							
Name	Title	Technique						
CHEX	Coherent High-Energy X-ray Sector for In Situ Science	In situ, surface high-energy coherent scattering						
Polar	Polarization modulation spectroscopy	Magnetic spectroscopy						
HEXM	A High-Energy X-ray Microscope	High-energy microscopies & CDI						
SAXPCS	Development of a Small-Angle X-ray Photon Correlation Spectroscopy Beamline for Studying Dynamics in Soft Matter Wide-Angle X-Ray Photon Correlation Spectroscopy and Time-Resolved Coherent X-Ray Scattering Beamline	Small-angle XPCS Wide-angle XPCS						
Ptycho	PtychoProbe	Ultimate resolution, forward scattering ptychography/spectromicroscopy						
InSitu	In Situ Nanoprobe Beamline	In situ, forward scattering ptychography/spectromicroscopy Long working distances						
CSSI	Coherent Surface Scattering Imaging Beamline for Unraveling Mesoscopic Spatial-Temporal Correlations	Coherent GISAXS, XPCS						
Atomic 3DNano	Atomic – A beamline for extremely high resolution coherent imaging of atomistic structures 3D Micro & Nano Diffraction	Diffraction microscopy & CDI Bragg CDI Upgrade of current 34-ID						



Key Decision: Beamline Roadmap

- Selected proposals contain two long beamlines that will extend beyond the Experiment Hall floor
 - None currently at the APS, yet common feature at ESRF, NSLS-II, Spring-8,
 Diamond, etc.
- Assignment of selected proposed beamlines to sectors is complex
 - Budget constraints
 - Impact on existing programs
 - Reuse of equipment
 - XSD, CAT strategic plans
 - Logistical factors: LOMs, environmental impact, roads, utilities, etc...
- Working Committee composed of APS and APS-U management considered options, selected a preferred option
- Long beamlines at Sectors 19 & 20 preferred
- Full roadmap analysis presented by J. Lang at APS-U Forum last week
- Conversations have been initiated with impacted sectors and programs
- APS SAC and ESAC have endorsed proposed plan

Long Beamlines – Sectors 19 & 20 Scenario

SITE CONSIDERATIONS EVALUATION												
BEAM LINES	ТОРО	SOILS & FOUND.	ROADWAY DISRUPTION	LOST PARKING	UTILITIES (scale 1- 20)	NATURAL RESOURCES	STORM WATER DETENTION	RING ACCES.	LOM RECONFIG	LOM SUPPORT	BUILDING 400 SUPPORT	OVERALL SCORE
19+20	8 **	7	10	5	12	10	6	5 (elec panel)	6	8	6	83

Beamline Enhancements

- In addition to the new beamlines, APS-U includes a program of enhancements to all other beamlines
- Enhancement funds will be distributed according to need and best use
 - 1. Ensure x-ray optics and other beamline instrumentation function, at a minimum, as well under upgraded source conditions as they do with the current source "Do no harm" (non-discretionary)
 - Upgrade current beamlines (sources, optics, vibration isolation, sample environment, end-station instrumentation, etc.) to take advantage of the ultra-low emittance delivered by the MBA lattice (discretionary)
- Process for Discretionary Enhancements
 - Call for proposals to be issued this year
 - Proposals are reviewed and prioritized by ad hoc committee
 - Prioritized list vetted by SAC and ESAC
 - Top proposals (limited by funding) incorporated into APS-U Project and the remainder held for possible funding with contingency
 - Complete process late-Spring/Summer of 2017 for inclusion in Project plan before the CD-2 review

Next Steps: Timeline to CD-2

- November
 - Complete beamline roadmapping
 - SAC Meeting Nov. 9-10
 - Complete Lattice Selection
 - Finalize RF decision
- December
 - ESAC Meeting Dec. 1-2
 - Mini-MAC Meeting week of Dec. 12
 - Issue Enhancements call for proposals
- January
 - Begin follow-up prelim design reviews (as needed)
- February
 - Begin full EVMS to have 3 months of data for CD2 review (tied to CD-2 date)
 - Work plan based on funding profile

- March
 - Complete ES&H/QA doc updates
 - Specification/interface docs
 - DOE Review (placeholder)
- April
 - Complete Draft Preliminary Design Report for MAC/ESAC Review
- May
 - Complete Preliminary Design Report
- June
 - Director's Review
- July
 - Finalize documents for DOE Review
 - August
 - DOE Review

Finally

- Thanks again for all your hard work that has brought us to this point
- Thanks to the user community for the engagement and support
 - Your support is essential for our moving ahead!
- We have a lot of work ahead
- I'm confident that together, we can make APS-U a reality

Thank You!

