

Plans for a Detector-Positioning Robot at 7-ID-C

Don Walko, TRR, XSD

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

TWG February 18, 2021

New time-resolved microscopy instrument at 7-ID-C

Local and in situ structural characterization and control

X-ray

Li, et al. J. Synchrotron Rad. 26, 1790 (2019)

Our need and requirements

- Conceptual needs:
 - Move moderately sized area detector
 - Cover large 3D range of reciprocal space (pitch, yaw, sampleto-detector distance) while facing square to sample
 - Fully decouple motion from nanodiffractometer stages
- Desired diffraction operation:
 - Give pitch, yaw (delta, nu) and sample-detector distance and robot just goes there
- Robot Requirements:
 - DOF: 6 axis
 - Sample payload: 10 kg
 - Reach: 500 to 2000 mm

Chosen Solution

Vendor: Stäubli TX90L Integrator: Square One Systems Design

The robot

Model	TX2-90L
Degrees of freedom	6
Nominal load capacity	5 kg
Maximum load capacity*	15 kg
Reach at wrist	1200 mm
Repeatability	±0.035 mm
Protection class (*wrist)	IP65 (*IP67)
Attachment methods	360° mounting possibility

Safety

 Keep out sensors/light curtains not feasible in this crowded hutch

- Software-designed exclusion zones

 To not hit hutch walls, etc.
- Current sensors in joints and collision sensor on end of arm
- Robot will only move "full speed" when hutch is searched and secured
 - Actually quite slow for a robot
- When hutch door open, motion possible only when controlled by a "teach pendant" at greatly reduced speed

Detector cage Securely hold and protect detector

Primary remaining challenge

Access widest range of angles at widest range of sample-todetector distances in highly constrained space of a built-out hutch

Primary remaining challenge

Access widest range of angles at widest range of sample-todetector distances in highly constrained space of a built-out hutch

Primary remaining challenge

Access widest range

of angles range of s detector highly co space of hutch

Video of robot in action

Left: view of robot Right: view of "detector" (video camera) pointed at "sample" (tooling ball)

Detector Robot and Sample Tracking.MOV

Disclaimers:

- Video from December, so there have been further improvements
- Video camera attached with only one screw so may have shifted slightly during filming

Remaining tasks

- Finalize robot position to optimize range of motion
- EPICS integration
- Installation
- Commission
- Use!

Thank you's

APS

- Sunil Bean
- Mike Fisher
- Ray Ziegler
- Don Jensen
- Dohn Arms
- Haidan Wen
- Alec Sandy, Xiaoyi Zhang, XSD management

- Square One
 - Echo Miller
 - Robert Viola
 - Jace Walsh

— . . .

Argonne Argonne 1946-2021