
TomoScan and TomoStream

Python Software for

Tomography Data Collection

Mark Rivers (University of Chicago)

Francesco DeCarlo (APS)

Viktor Nikitin (APS)

March 17, 2021

1

2

3

4

5

6

7

8

11

10

Introduction

X-rays

12

10

11

• TomoScan was a collaboration with Francesco

• TomoStream is entirely Francesco and Viktor, not me

• May be a dedicated presentation on that in the future

• Only a few beamlines run tomography

• But the concepts presented here can almost certainly be useful for

other techniques

1

2

3

4

5

6

7

8

11

10

Tomography at APS Beamline 13-BM-D

X-rays

12

10

11

• Bending magnet source, critical energy ~20 keV

• Beamline modes:

• Monochromatic beam, 10-80 keV, Si (111)

• Pink beam, 1.1 m long vertical mirror bounces down

• Can be bent to focus or defocus

• White beam

• Both ambient and very high-pressure tomography

• Ambient runs about 30% of the time

• Several non-tomography experiments in same station

Pink Beam, Mirror=1.6 mrad

Flat field

• Mirror angle=1.6 mrad

• 4 mm Al absorber

• 2 ms exposure time, 66 frames/s, 13.6 seconds total

• 8 mm x 5 mm field of view shown

Pink Beam, Mirror=0.8 mrad

Flat field

• Mirror angle=0.8 mrad

• 4 mm Al absorber

• 8 mm x 5 mm field of view shown

1

2

3

4

5

6

7

8

9

11

10
Tomography Apparatus in 13-BM-D

Before January 2021

1. Sample at x-ray beam height
2. X-Z translation stages above rotation stage, 25mm travel
3. Rotation stage
4. Vertical translation stage, 30 mm travel
5. Horizontal translation stage, 100 mm travel
6. Optical table, 5 degrees of freedom (X, Y, roll, pitch, yaw)
7. Scintillator and 45 degree mirror
8. Nikon macro lens (others lenses available for higher

magnification)
9. CMOS camera, 1920x1200 pixels, 163 frames/s maximum
10. X-Y-Z-theta stage to position camera
11. Z stage to change scintillator to sample distance for phase

contrast
12. Brillouin spectroscopy optics for diamond anvil cell, not used

for tomography

X-rays

12

10

11

• Old stage

– < 3 kg load

– Maximum distance from pink beam to stage is ~75

mm

– Cannot use large in-situ apparatus

– Ball bearing stage, > 1 mm runout

• New stage

– 25 kg load

– Hexpod base, 6 degrees of freedom

– Air bearing rotation stage, 0.25 mm runout

• Finished 2021-1 run with new stage February 26,

2021, greatly improved resolution and stiffness

New Tomography Sample Stage

In-situ Cells on New Stage

Uniaxial load cell Triaxial high-pressure load cell

High-P tomography: Instrumentation

Die set

Harmonic

Drive

Transport

Rails

250 T press frame

Hydraulic

ram

Thrust bearings

Max. load 50 tons

1

2

3

4

5

6

7

8

11

10Tomography Data Collection History (13-BM-D)
TomoCollect

X-rays

12

10

11

• Object-oriented code written in IDL

• Simple Graphical User Interface

• Started as step-scanning, but evolved to only on-the-fly scanning by

2014.

• Used successfully for 14 years from 2006-2020.

1

2

3

4

5

6

7

8

11

10
TomoCollect

X-rays

12

10

11

1

2

3

4

5

6

7

8

11

10
TomoCollect Strengths

X-rays

12

10

11

• Hardware trigger of detector based on rotation stage position

• Simple GUI very easy for users to learn, 1-2 hours to run independently.

• Small code, 2500 lines including GUI.

• Code functions as a tomography scan server that can be run from any EPICS

client.

• Its only job is to collect a single tomography dataset.

• Knows nothing about beamline energy, sample height, sample temperature, etc.

• Clients written any language (Python, IDL, etc.) control those parameters and then commands

TomoCollect to collect a dataset.

1

2

3

4

5

6

7

8

11

10TomoCollect Weaknesses

X-rays

12

10

11

• The only thing controllable from EPICS was the file name and starting

acquisition.

• Could not script the exposure time, number of projections, location of rotation

stage, etc.

• 13-BM-D was the only beamline using this software, no community

development

• IDL is no longer popular, needed to be ported to Python.

1

2

3

4

5

6

7

8

11

10Data Collection History (2-BM, 7-BM, 32-ID)
Python programs

X-rays

12

10

11

Python scan programs were used on each of these beamlines

Weaknesses

• Not a clean object oriented design

• Programs grew organically with time, became very large and

diverged for each beamline.

• Hard to maintain, changes made on one beamline could not be

easily used on the others

1

2

3

4

5

6

7

8

11

10TomoScan
New Python Scanning Software

X-rays

12

10

11

• In April 2020 Francesco and I took advantage of the COVID shutdown at

APS to devote time to developing new Python scanning software.

• Started with the 2-BM Python code, but did a major refactoring.

1

2

3

4

5

6

7

8

11

10TomoScan
Architecture

X-rays

12

10

11

• Beamline independent base classes

• Beamline dependent derived classes

• Functions as a “tomography scan server”, only job is to collect a single

tomography dataset.

• All scan parameters are EPICS Process Variables (PVs)

• Can be scripted from any client.

• Can use any EPICS Operator Interface client (medm, CSS, caQtDM) as the GUI.

• Provides a simple EPICS IOC application with databases and OPI

screens that can be used at any beamline.

• Runs on Linux or Windows.

1

2

3

4

5

6

7

8

11

10TomoScan Assumptions and Limitations

X-rays

12

10

11

• Designed to function only with the EPICS control system

• Assumes motors are using the EPICS motor record

• Assumes the detector is using the EPICS areaDetector package

• Currently only implements on-the-fly scanning (continuous

rotation)

• Step scanning will be implemented for 32-ID nanotomography

• No other assumptions about hardware or software

1

2

3

4

5

6

7

8

11

10
tomoscan.py

Primary base class

X-rays

12

10

11

Methods

• move_sample_in(), move_sample_out()

• open_shutter(), close_shutter()

• set_exposure_time(), set_flat_exposure_time()

• Copies the desired exposure time to the camera

• compute_frame_time()

• Computes the minimum time between triggers based on the exposure time

• Used to set the velocity of the rotation stage

• collect_dark_fields(), collect_flat_fields(), collect_projections()

• wait_camera_done()

• Waits for a series of images to be collected, or an abort or timeout

• begin_scan(), end_scan(), abort_scan()

• Performs operations that need to be done at the beginning and end of a scan, or when

aborting a scan.

• fly_scan(), run_fly_scan()

• pv_callback()

1

2

3

4

5

6

7

8

11

10
tomoscan.py methods (continued)

X-rays

12

10

11

fly_scan()

• Performs the operations for a tomography fly scan, i.e. with continuous rotation.

• This base class method does the following:

• Moves the rotation motor to position defined by the RotationStart PV.

• Calls begin_scan()

• If the DarkFieldMode PV is ‘Start’ or ‘Both’ calls collect_dark_fields()

• If the FlatFieldMode PV is ‘Start’ or ‘Both’ calls collect_flat_fields()

• Calls collect_projections()

• If the FlatFieldMode PV is ‘End’ or ‘Both’ calls collect_flat_fields()

• If the DarkFieldMode PV is ‘End’ or ‘Both’ calls collect_dark_fields()

• Calls end_scan

• If there is either CameraTimeoutError exception or ScanAbortError exception during

the scan, it jumps immediate to calling end_scan() and returns.

• Derived classes generally do not need to override this method, but they are free to do

so if required.

run_fly_scan()

• Runs fly_scan() in a separate thread

• pv_callback()

1

2

3

4

5

6

7

8

11

10tomoscan.py Method (continued)

X-rays

12

10

11

pv_callback()

• Callback function that is called by pyEpics when certain EPICS PVs are changed

• The PVs that are handled are:

• StartScan : Calls run_fly_scan()

• AbortScan : Calls abort_scan()

• MoveSampleIn : Runs MoveSampleIn() in a new thread.

• MoveSampleOut : Runs MoveSampleOut() in a new thread.

• ExposureTime : Runs set_exposure_time() in a new thread.

• FilePath : Runs copy_file_path() in a new thread.

• FPFilePathExists : Runs copy_file_path_exists() in a new thread.

• ~900 lines of code

1

2

3

4

5

6

7

8

11

10tomoscan base class medm screens

X-rays

12

10

11

1

2

3

4

5

6

7

8

11

10
tomoscan_pso.py

X-rays

12

10

11

• Intermediate base class for Aerotech rotation stages using Position Synchronized

Output (PSO) to trigger detector

• Most APS tomography beamlines use Aerotech air-bearing rotation stages, so having a

base class for this makes sense.

• Implements the methods to collect dark fields, flat fields and projections

• Uses the PSO output to trigger the detector based on projection interval

• Can program the pulse width for camera-specific requirements

• ~300 lines of code

1

2

3

4

5

6

7

8

11

10
Beamline Dependent Derived Classes

X-rays

12

10

11

tomoscan_13bm_pso

• Derived from tomoscan_pso class.

• Only implements set_trigger_mode() because our FLIR Grasshopper 3 camera needs

to take 3 dummy images when switching from Internal Trigger to External Trigger.

• 76 lines of code.

tomoscan_13bm_mcs.py

• Implements methods that are specific to using an SIS3820 to divide stepper motor

pulses by N for detector triggering.

• These methods do something beamline-specific and thencall the base-class version in

many cases

• Used to be used for main tomography data collection, but that now uses Aerotech

rotation stage and PSO version above.

• Used for high-pressure tomography

• 247 lines of code.

• Also beamline-dependent classes for 2-BM-A, 2-BM-B, and 7-BM.

13-BM Beamline-specific medm screen

• Metadata is saved for both user-entered

information shown here, as well as many

EPICS PVs for the state of the storage

ring, beamline, sample stage, etc.

• Can add additional metadata for a

specific experiment (temperature, etc.)

Scanning

• Any EPICS client can change the tomoscan scan parameters (file name, exposure

time, etc.) and then write 1 to the StartScan PV to perform a complete

tomography scan.

• StartScan is an EPICS “busy” record so ca_put_callback will not return until the

scan is complete, including the file-writer having finished writing all data.

Scanning with EPICS scan record

• Very mature tool

• EPICS scan record can scan any EPICS PV and collect a tomography dataset at each point in the scan.

• Vertical sample position scanned here

• Could scan monochromator energy, sample temperature, etc.

Scanning with Python script

Streaming model with Communication via EPICS pvAccess

1 . Detector machine

EPICS AreaDetector

• preprocessing projections

• capture to an hdf5

• circular buffer

• broadcasting projections

TomoScanStream(Tomoscan)

• scanning control

• data capturing control

• broadcasting (binned) darks/flats/angles with

pvAccess

2. Processing machine with GPU

Tomostream

• ortho-slice reconstruction (3 slices)

• broadcasting reconstructions with

Channel Acces and pvAccess

Streaming model with Communication via EPICS pvAccess

3. Observer machine
Visualization of projections/reconstructions

Uses ImageJ with ADViewer or NTDAViewer plugins

Streaming model with Communication via EPICS pvAccess

TOMOSCAN+TOMOSTREAM MODEL

Streaming data

1. Continuous data collection

2. Capture projections to hdf5 file on demand

3. Circular buffer to store projections for some period

4. Re-take flat/dark fields on demand

5. Broadcasting projections, darks, and flats via network

6. Visualization of projections in ImageJ

Streaming reconstruction

1. Real-time orthogonal slices reconstruction

2. Broadcasting reconstruction via network

3. Visualization of reconstructions in ImageJ

Highlights

NEW OPPORTUNITIES WITH STREAMING

Real-time alignment of the acquisition system

Real-time positioning of the sample

Real-time adjustment of acquisition parameters

Real-time monitoring of sample changes

Focusing to the regions of interest

Saving data only when the dynamic process occurs

Use of Machine Learning techniques to automatically detect sample changes,

apply segmentation and quantitative analysis

https://tomostream.readthedocs.io/

1

2

3

4

5

6

7

8

11

10

Thanks for Your Attention !!!X-rays

12

10

11

