**TomoScan and TomoStream Python Software for Tomography Data Collection** Mark Rivers (University of Chicago) Francesco DeCarlo (APS)

Viktor Nikitin (APS)

March 17, 2021

# Introduction

- TomoScan was a collaboration with Francesco
- TomoStream is entirely Francesco and Viktor, not me
- May be a dedicated presentation on that in the future
- Only a few beamlines run tomography
- But the concepts presented here can almost certainly be useful for other techniques

# Tomography at APS Beamline 13-BM-D

- Bending magnet source, critical energy ~20 keV
- Beamline modes:
  - Monochromatic beam, 10-80 keV, Si (111)
  - Pink beam, 1.1 m long vertical mirror bounces down
    - Can be bent to focus or defocus
  - White beam
- Both ambient and very high-pressure tomography
- Ambient runs about 30% of the time
  - Several non-tomography experiments in same station

# Pink Beam, Mirror=1.6 mrad

- Mirror angle=1.6 mrad
- 4 mm Al absorber
- 2 ms exposure time, 66 frames/s, 13.6 seconds total
- 8 mm x 5 mm field of view shown



# Pink Beam, Mirror=0.8 mrad

- Mirror angle=0.8 mrad
- 4 mm Al absorber
- 8 mm x 5 mm field of view shown



### Tomography Apparatus in 13-BM-D Before January 2021

- 1. Sample at x-ray beam height
- 2. X-Z translation stages above rotation stage, 25mm travel
- 3. Rotation stage
- 4. Vertical translation stage, 30 mm travel
- 5. Horizontal translation stage, 100 mm travel
- 6. Optical table, 5 degrees of freedom (X, Y, roll, pitch, yaw)
- 7. Scintillator and 45 degree mirror
- 8. Nikon macro lens (others lenses available for higher magnification)
- 9. CMOS camera, 1920x1200 pixels, 163 frames/s maximum
- 10. X-Y-Z-theta stage to position camera
- 11. Z stage to change scintillator to sample distance for phase contrast
- 12. Brillouin spectroscopy optics for diamond anvil cell, not used for tomography



# **New Tomography Sample Stage**



- Old stage
  - < 3 kg load
  - Maximum distance from pink beam to stage is ~75 mm
  - Cannot use large in-situ apparatus
  - Ball bearing stage, > 1  $\mu$ m runout
- New stage
  - 25 kg load
  - Hexpod base, 6 degrees of freedom
  - Air bearing rotation stage, 0.25  $\mu m$  runout
- Finished 2021-1 run with new stage February 26, 2021, greatly improved resolution and stiffness

# **In-situ Cells on New Stage**



Uniaxial load cell



Triaxial high-pressure load cell

# High-P tomography: Instrumentation



# Tomography Data Collection History (13-BM-D) TomoCollect

- Object-oriented code written in IDL
- Simple Graphical User Interface
- Started as step-scanning, but evolved to only on-the-fly scanning by 2014.
- Used successfully for 14 years from 2006-2020.

### TomoCollect

| IDL Tomography Collection                                                                                                                                                   | _              |              | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|---|
| File                                                                                                                                                                        |                |              |   |
| Rotation                                                                                                                                                                    |                |              |   |
| Drive         Readback         Motor Speed         OTF Groups         Don't return           0.000000         0.000000         15.0000         17.0000         Don't return | n motor to sta | irt of scan  |   |
| Start position     End position     Step size     # angles       0.000000     179.800     0.200000     900                                                                  |                |              |   |
| Horizontal Translation                                                                                                                                                      |                |              |   |
| Drive         Readback         Sample in position         Sample out position           0.000000         0.000500000         0.000000         10.0000                       |                |              |   |
| Vertical Translation                                                                                                                                                        |                |              |   |
| Drive         Readback         Sample in position         Sample out position           -5.00000         0.000000         15.0000         13.0000                           |                |              |   |
| Flat Field Control                                                                                                                                                          |                |              |   |
| Axis to move for flat fields     Move sample in     # angles between flat fields     # i       Horizontal     Move sample out     900     10                                |                | t field scan |   |
| Data Collection                                                                                                                                                             |                |              |   |
| Exposure time     # dark currents       2.00000     0     ✓ Auto scan     Start scan     Abort scan                                                                         | Alignment so   | can          |   |
| Status                                                                                                                                                                      |                |              |   |
| Output file name: Test                                                                                                                                                      |                |              |   |
| Attributes .xml file: tomoDetectorAttributes.xml                                                                                                                            |                |              |   |
| Sample description: D2339                                                                                                                                                   |                |              |   |
| Scan status: Connected to 13BMDPG1: Scan point:                                                                                                                             |                |              |   |
| Time Elapsed: Estimated Remaining Time:                                                                                                                                     |                |              |   |

| EPICS Process Variables       |                            |                      |   | _ | × |
|-------------------------------|----------------------------|----------------------|---|---|---|
| Camera name:                  | 13BMDPG1:                  |                      |   |   |   |
| SIS MCS base name PV:         | 13BMD:SIS1:                |                      |   |   |   |
| Close shutter PV:             | 13BMA:CloseBMDShutter.PROC | Close shutter value: | 1 |   |   |
| Open shutter PV:              | 13BMA:OpenBMDShutter.PROC  | Open shutter value:  | 1 |   |   |
| Rotation motor:               | 13BMD:m38                  |                      |   |   |   |
| Horizontal translation motor: | 13BMD:m85                  |                      |   |   |   |
| Vertical translation motor:   | 13BMD:m90                  |                      |   |   |   |
| Beam ready PV:                | 13BMA:mono_pid1Locked.VAL  |                      |   |   |   |
| Autoscan synchronization PV:  | 13BMD:CCD_synch.VAL        |                      |   |   |   |
| Autoscan suffix PV:           | 13BMD:CCD_base_file.VAL    |                      |   |   |   |
| Accept Cancel                 |                            |                      |   |   |   |

| 🖲 Experiment In     | formation                   | -    | × |
|---------------------|-----------------------------|------|---|
| Sample:             | D2339                       |      |   |
| Title:              | Fa100                       | <br> |   |
| Comments:           |                             |      |   |
| Operator:           | Rivers, Officer             |      |   |
| Camera/optics       | Grasshopper3, 5X 75 mm tube |      |   |
| X pixel size:       | 2.08000                     |      |   |
| Y pixel size:       | 2.08000                     |      |   |
| X-ray energy (keV): | 50.0000                     |      |   |
| Dark Current:       | 64.0000                     |      |   |
| Accept Cancel       |                             |      |   |

### **TomoCollect Strengths**

- Hardware trigger of detector based on rotation stage position
- Simple GUI very easy for users to learn, 1-2 hours to run independently.
- Small code, 2500 lines including GUI.
- Code functions as a tomography scan server that can be run from any EPICS client.
  - Its only job is to collect a single tomography dataset.
  - Knows nothing about beamline energy, sample height, sample temperature, etc.
  - Clients written any language (Python, IDL, etc.) control those parameters and then commands TomoCollect to collect a dataset.

### **TomoCollect Weaknesses**

- The only thing controllable from EPICS was the file name and starting acquisition.
  - Could not script the exposure time, number of projections, location of rotation stage, etc.
- 13-BM-D was the only beamline using this software, no community development
- IDL is no longer popular, needed to be ported to Python.

# Data Collection History (2-BM, 7-BM, 32-ID) Python programs

Python scan programs were used on each of these beamlines

### Weaknesses

- Not a clean object oriented design
- Programs grew organically with time, became very large and diverged for each beamline.
- Hard to maintain, changes made on one beamline could not be easily used on the others

# TomoScan New Python Scanning Software

- In April 2020 Francesco and I took advantage of the COVID shutdown at APS to devote time to developing new Python scanning software.
- Started with the 2-BM Python code, but did a major refactoring.

# TomoScan Architecture

- Beamline independent base classes
- Beamline dependent derived classes
- Functions as a "tomography scan server", only job is to collect a single tomography dataset.
- All scan parameters are EPICS Process Variables (PVs)
  - Can be scripted from any client.
  - Can use any EPICS Operator Interface client (medm, CSS, caQtDM) as the GUI.
- Provides a simple EPICS IOC application with databases and OPI screens that can be used at any beamline.
- Runs on Linux or Windows.

### **TomoScan Assumptions and Limitations**

- Designed to function only with the EPICS control system
- Assumes motors are using the EPICS motor record
- Assumes the detector is using the EPICS areaDetector package
- Currently only implements on-the-fly scanning (continuous rotation)
  - Step scanning will be implemented for 32-ID nanotomography
- No other assumptions about hardware or software

### tomoscan.py Primary base class

#### Methods

- move\_sample\_in(), move\_sample\_out()
- open\_shutter(), close\_shutter()
- set\_exposure\_time(), set\_flat\_exposure\_time()
  - Copies the desired exposure time to the camera
- compute\_frame\_time()
  - Computes the minimum time between triggers based on the exposure time
  - Used to set the velocity of the rotation stage
- collect\_dark\_fields(), collect\_flat\_fields(), collect\_projections()
- wait\_camera\_done()
  - Waits for a series of images to be collected, or an abort or timeout
- begin\_scan(), end\_scan(), abort\_scan()
  - Performs operations that need to be done at the beginning and end of a scan, or when aborting a scan.
- fly\_scan(), run\_fly\_scan()
- pv\_callback()

### tomoscan.py methods (continued)

fly\_scan()

- Performs the operations for a tomography fly scan, i.e. with continuous rotation.
- This base class method does the following:
  - Moves the rotation motor to position defined by the RotationStart PV.
  - Calls begin\_scan()
  - If the DarkFieldMode PV is 'Start' or 'Both' calls collect\_dark\_fields()
  - If the FlatFieldMode PV is 'Start' or 'Both' calls collect\_flat\_fields()
  - Calls collect\_projections()
  - If the FlatFieldMode PV is 'End' or 'Both' calls collect\_flat\_fields()
  - If the DarkFieldMode PV is 'End' or 'Both' calls collect\_dark\_fields()
  - Calls end\_scan
- If there is either CameraTimeoutError exception or ScanAbortError exception during the scan, it jumps immediate to calling end\_scan() and returns.
- Derived classes generally do not need to override this method, but they are free to do so if required.

#### run\_fly\_scan()

- Runs fly\_scan() in a separate thread
- pv\_callback()

#### tomoscan.py Method (continued)

pv\_callback()

- Callback function that is called by pyEpics when certain EPICS PVs are changed
- The PVs that are handled are:
  - StartScan : Calls run\_fly\_scan()
  - AbortScan : Calls abort\_scan()
  - MoveSampleIn : Runs MoveSampleIn() in a new thread.
  - MoveSampleOut : Runs MoveSampleOut() in a new thread.
  - ExposureTime : Runs set\_exposure\_time() in a new thread.
  - FilePath : Runs copy\_file\_path() in a new thread.
  - FPFilePathExists : Runs copy\_file\_path\_exists() in a new thread.
- ~900 lines of code

#### tomoscan base class medm screens

| 💌 tomoScan.adl@corvette – 🗆 🗙                              |
|------------------------------------------------------------|
| Tomography Data Collection 13BMDPG1:TS:                    |
|                                                            |
| Setup                                                      |
| Epics PV names 🕒 Beamline-specific display 💶               |
| Rotation                                                   |
| Start angle 0.000 # of angles 1800 Return to start         |
| Angle step 0.100 Stop angle 179.901 Yes 🖃                  |
| Flat Field Control                                         |
| X in position 0.000 Y in position 0.000 Move Sample In     |
| X out position 10.000 Y out position 5.000 Move Sample Out |
| Flat field axis × = Collect flat fields Both =             |
| Flat exposure same [0.000 # Flat fields 10                 |
| Dark Field Control                                         |
|                                                            |
| # Dark fields Dark value 100 Collect dark fields None I    |
| File Control                                               |
| Overwrite warning: Yes Exists: Yes                         |
| File directory T:\tomo_user\2021\Run1\Buscarnera\Ott7      |
| Base file name Ott7_A                                      |
| Data Collection                                            |
| Exposure time 0.010 Start Scan Abort Scan Status Done      |
| Status                                                     |
| Scan status Scan complete                                  |
| Images collected 10/10                                     |
| Images saved 1820/1820                                     |
| Elapsed time 0:00:04                                       |
| Remaining time 0:00:00                                     |
| Python server Running                                      |

| tomoScanEPICS_PVs.adl@corvette | – 🗆 X                      |
|--------------------------------|----------------------------|
| Epics Proce                    | ess Variables              |
| Camera prefix                  | 13BMDPG1:                  |
| File plugin prefix             | 13BMDPG1:HDF1:             |
| Rotation PV                    | 13BMD:m119                 |
| Sample X PV                    | 13BMD:m114                 |
| Sample Y PV                    | 13BMD:m115                 |
| Open shutter PV                | 13BMA:OpenBMDShutter.PROC  |
| Open shutter value             | 1                          |
| Close shutter PV               | 13BMA:CloseBMDShutter.PROC |
| Close shutter value            | 1                          |

#### tomoscan\_pso.py

- Intermediate base class for Aerotech rotation stages using Position Synchronized Output (PSO) to trigger detector
- Most APS tomography beamlines use Aerotech air-bearing rotation stages, so having a base class for this makes sense.
- Implements the methods to collect dark fields, flat fields and projections
- Uses the PSO output to trigger the detector based on projection interval
- Can program the pulse width for camera-specific requirements
- ~300 lines of code



#### **Beamline Dependent Derived Classes**

#### tomoscan\_13bm\_pso

- Derived from tomoscan\_pso class.
- Only implements set\_trigger\_mode() because our FLIR Grasshopper 3 camera needs to take 3 dummy images when switching from Internal Trigger to External Trigger.
- 76 lines of code.

#### tomoscan\_13bm\_mcs.py

- Implements methods that are specific to using an SIS3820 to divide stepper motor pulses by N for detector triggering.
- These methods do something beamline-specific and thencall the base-class version in many cases
- Used to be used for main tomography data collection, but that now uses Aerotech rotation stage and PSO version above.
- Used for high-pressure tomography
- 247 lines of code.
- Also beamline-dependent classes for 2-BM-A, 2-BM-B, and 7-BM.

### **13-BM Beamline-specific medm screen**

| 💐 tomoScan_13BM.adl@corvette                   | _       |   | × |
|------------------------------------------------|---------|---|---|
| 13-BM Tomography 13BMDPG1:                     | TS:     |   |   |
| Sample Information                             |         |   |   |
| Sample name 0771                               |         |   |   |
| Description #1                                 |         |   |   |
| Description #2 40 mm sample to scintillator    |         |   |   |
| Description #3 1.5 mrad mirror, 0.25mm Cu filt |         |   |   |
| Configuration Information                      |         |   |   |
| Scintillator type LuAg                         |         |   |   |
| Scint. thickness (microns) 250                 |         |   |   |
| Image pixel size (microns) 5.74                |         |   |   |
| Detector pixel size (microns) 5.74             |         |   |   |
| Camera objective Nikon macro,mir               | h. focu | s |   |
| Tube length (mm) 🛛                             |         |   |   |
| Energy mode Pink I                             |         |   |   |
| Epics Process Variables                        |         |   |   |
| SIS MCS prefix 13BMD:SIS1:                     |         |   |   |
| Beam ready PV 13BMA:mono_pid1Locked            |         |   |   |
| Beam ready value 1                             |         |   |   |
| User Information                               |         |   |   |
| User name Poug Schmitt                         |         |   |   |
| Institution Purdue University                  |         |   |   |
| ANL badge # Unknown                            |         |   |   |
| User e-mail schmitt@purdue.edu                 |         |   |   |
| APS proposal # None                            |         |   |   |
| APS prop. title Tutorial workshop              |         |   |   |
| APS ESAF # Unknown                             |         |   |   |

- Metadata is saved for both user-entered information shown here, as well as many EPICS PVs for the state of the storage ring, beamline, sample stage, etc.
- Can add additional metadata for a specific experiment (temperature, etc.)

### Scanning

- Any EPICS client can change the tomoscan scan parameters (file name, exposure time, etc.) and then write 1 to the StartScan PV to perform a complete tomography scan.
- StartScan is an EPICS "busy" record so ca\_put\_callback will not return until the scan is complete, including the file-writer having finished writing all data.

### **Scanning with EPICS scan record**

- Very mature tool
- EPICS scan record can scan any EPICS PV and collect a tomography dataset at each point in the scan.
- Vertical sample position scanned here
- Could scan monochromator energy, sample temperature, etc.

| 💐 scan_more.adl@corvette 🛛 —                                                                      |                                  |
|---------------------------------------------------------------------------------------------------|----------------------------------|
| 13BMD:scan1     IDLE       SCAN Complete     #PTS       DATA STATE: POSTED     SAVE DATA Inactive | SCAN DIM: 0<br>2                 |
| Read 13BMD:m90.RBV 1                                                                              | ME 0.000 (S)<br>0.100<br>.100    |
| START CENTER END STEP SIZE                                                                        | WIDTH                            |
| 0.000 3.000 6.000 6.000<br>UNITS SCAN MODE ABS/REL<br>MM LINEAR RELATIVE                          | 6.000<br>AFTER SCAN<br>PRIOR POS |
|                                                                                                   | IME 0.000 (S)                    |
| 1 13BMDPG1:TS:StartScal 2                                                                         |                                  |
| Detectors                                                                                         | SCAN                             |
| 01 0.000                                                                                          | GO                               |
| 02.000                                                                                            | PAUSE                            |
| 0.000                                                                                             | ABORT                            |
| 04 0.000                                                                                          | Less                             |
| PLOTS                                                                                             | More ?                           |

#### **Scanning with Python script**

import epics

def scan demo(tomo prefix, exposure time, scan pv, start, step, points):

"""Demonstrates collecting a series of tomography datasets while scanning an EPICS PV.

```
epics.caput(tomo_prefix + 'ExposureTime', exposure_time, wait=True)
file_plugin_prefix = epics.caget(tomo_prefix + 'FilePluginPVPrefix')
# Set the initial file number back to 1 and make sure AutoIncrement is enables
epics.caput(file_plugin_prefix + 'FileNumber', 1)
epics.caput(file_plugin_prefix + 'AutoIncrement', 'Yes')
```

```
for i in range(l, points+l):
    epics.caput(scan_pv, start + step*i, wait=True)
    epics.caput(tomo_prefix + 'StartScan', l, wait=True, timeout=100)
    print('Completed dataset %s' % epics.caget(file plugin prefix + 'FullFileName RBV', as_string=True))
```

# **Streaming model with Communication via EPICS pvAccess**

#### 1. Detector machine



#### **EPICS** AreaDetector

- preprocessing projections
- capture to an hdf5
- circular buffer
- broadcasting projections

#### TomoScanStream(Tomoscan)

- scanning control
- data capturing control
- broadcasting (binned) darks/flats/angles with pvAccess

| Tomography Data Collection 2bmb:TomoScanStream:                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setup                                                                                                                                                                                                                                                       |
| Epics PV names 🖳 Beamline-specific display 👥 🖭                                                                                                                                                                                                              |
| Rotation                                                                                                                                                                                                                                                    |
| Start angle 0.000     # of angles 5000     Return to start       Angle step 0.120     Stop angle 599.880                                                                                                                                                    |
| Flat Field Control                                                                                                                                                                                                                                          |
| X in position 0.000 Y in position 0.000 Move Sample In<br>X out position 10.000 Y out position 0.000 Move Sample Dut<br>Flat field axis × ✓ Collect flat fields Now<br>Flat exposure Same ✓ 0.000 # Flat fields 20                                          |
| Dark Field Control<br># Dark fields 50 Dark value 10 Collect dark fields Now 1                                                                                                                                                                              |
| File Control         Overwrite warning:       Yes         File directory       /local/data/2020-02/decarlo/         Base file name base stream                                                                                                              |
| Streaming Control         # Pre count 100       100       Buffer Wrapping         Capture proj       Start       Stop       # Capture 100       10         File name       base_stream_015.h5       # Proj 200         Broadcast binning       =       Done |
| Data Collection           Exposure time 0.030         Start Scan         Abort Scan         Status Done                                                                                                                                                     |
| Status                                                                                                                                                                                                                                                      |
| Scan status Scan complete<br>Images collected 4663/5000<br>Images saved 10/10<br>Elapsed time 0:02:57<br>Remaining time 0:00:12<br>Python server Running                                                                                                    |

# Streaming model with Communication via EPICS pvAccess

#### 2. Processing machine with GPU



#### Tomostream

- ortho-slice reconstruction (3 slices)
- broadcasting reconstructions with Channel Acces and pvAccess

| Stream Reconstruction 2bmb:TomoStream:               |
|------------------------------------------------------|
| Setup                                                |
| Epics PV names 🖳                                     |
| Streaming Control                                    |
| Ortho X 174 Dortho X 507 Dortho X 1009 Dortho Z 1009 |
| Center 886.00 Filter type Butterworth                |
| Tomography Reconstruction                            |
| Start Recon Abort Recon                              |
| Status                                               |
| Recon status Running                                 |
| Buffer size 360                                      |
| Recon time (s) 0.00863                               |
| Python server Running                                |

# Streaming model with Communication via EPICS pvAccess

#### 3. Observer machine



Visualization of projections/reconstructions

Uses ImageJ with ADViewer or NTDAViewer plugins



### TOMOSCAN+TOMOSTREAM MODEL Highlights

#### Streaming data

- 1. Continuous data collection
- 2. Capture projections to hdf5 file on demand
- 3. Circular buffer to store projections for some period
- 4. Re-take flat/dark fields on demand
- 5. Broadcasting projections, darks, and flats via network
- 6. Visualization of projections in ImageJ

#### **Streaming reconstruction**

- 1. Real-time orthogonal slices reconstruction
- 2. Broadcasting reconstruction via network
- 3. Visualization of reconstructions in ImageJ

| tomoScanStream.adl _ 🗖                                    |
|-----------------------------------------------------------|
| Tomography Data Collection 2bmb:TomoScanStream:           |
| Setup                                                     |
|                                                           |
| Epics PV names 🖳 🛛 Beamline-specific display 🔜            |
| Rotation                                                  |
| Start angle 0.000 # of angles 5000 Return to start        |
| Angle step 0.120 Stop angle 599.880 Yes -                 |
| Flat Field Control                                        |
| X in position 0.000 Y in position 0.000 Move Sample In    |
| X out position 10.000 Y out position 0.000 Move Sample In |
| Flat field axis ×                                         |
| Flat exposure Same # 0.000 # Flat fields 20               |
|                                                           |
| Dark Field Control                                        |
| # Dark fields 📴 🗾 Dark value 🛛 Collect dark fields 🔜 Now  |
| File Control                                              |
| Overwrite warning: Exists: Yes                            |
| File directory /local/data/2020-02/decarlo/               |
| Base file name base_stream                                |
| Streaming Control                                         |
| # Pre count 100 100 Buffer Wrapping                       |
| Capture proj <u>Start</u> Stop # Capture 100 10           |
| File name base_stream_015.h5  # Proj 200                  |
| Broadcast binning 🔜 🛛 Done                                |
| Data Collection                                           |
| Exposure time 0.030 Start Scan Start Scan Status Done     |
| Status                                                    |
| Scan status Scan complete                                 |
| Images collected 4663/5000                                |
| Images saved 10/10                                        |
| Elapsed time 0:02:57                                      |
| Remaining time 0:00:12                                    |
| Python server Running                                     |

| Stream Reconstruction 2bmb:TomoStream: |
|----------------------------------------|
| Setup                                  |
| Epics PV names 🕒                       |
| Streaming Control                      |
| Ortho X E07                            |
| Orhto Y                                |
| Center 886.00 Filter type Dutterworth  |
| Tomography Reconstruction              |
| Start Recon                            |
| Status                                 |
| Recon status Running                   |
| Buffer size 360                        |
| Recon time (s) 0.00863                 |
| Python server Running                  |

# **NEW OPPORTUNITIES WITH STREAMING**

- Real-time alignment of the acquisition system
- Real-time positioning of the sample
- Real-time adjustment of acquisition parameters
- Real-time monitoring of sample changes
- Focusing to the regions of interest
- Saving data only when the dynamic process occurs
- Use of Machine Learning techniques to automatically detect sample changes, apply segmentation and quantitative analysis

# Thanks for Your Attention !!!