

Remote Operation of 12-ID SAXS/GISAXS with UR3 robot

BYEONGDU LEE

CMS GROUP

User flow chart

12-ID Remote Experiment System

Database

Mysql (Xiaobing, Byeongdu)

- Tables
 - frames, frame_items, order, order_items, users, order_statuses
 - These are constructed from an example for a store that needs to manage product inventories, orders, and shipping.
- Can be easily communicated with python and PHP.
- Running on a PC at the beamline

Web Interface

PHP programming (Xiaobing)

- Portal to communicate with 12ID Remote Operation Database
- For Users
 - User registration
 - Not linked to APS DB
 - User ID : email address
 - Other info to provide: mailing address and GUP number
 - Requesting sample plates
 - Registering sample information for the sample plates
- For staff
 - DB searching for statistics and management
 - Update status of the user's sample plates

Sample Plate Shipping

PHP/Python codes for Dymo label printer

- Print shipping labels (user's registered address)
- Scan QRcodes, generate web-links, and email to users
- Can check the status of a sample frame.

Bean	nline	id12						
User	Email	blee@an	l.gov					
Jser	Addre	55:				Get User Addre	ISS	
Cler 5 Sp Arlir	nmie E oohn C ngton,	etchley ircle, TX 3675						
				Print User	Address			
What	User	Requested	d:		Retrieve Orders			
orde 1 3	er_id	use 5 5	r_id GL 11 11	IP ord 111 201 115 201	ler_date co 19-01-30 No 17-08-25	omments		
New Order Items Shipped				Shipped	Items	Retur	ned Items	
	id	order_id	frame_id	frame_index	item_status	shipped_date	returned_date	
17	' 1		Capillary Plate	9 3	2	2020-09-15	None	
<								
				Update D	atabase			
QR C	ode So	anned:						
http	s://12i	id.xray.ap	s.anl.gov/CPT_i	nput.php?sample	_holder=CPT00	13		

Sample Frame

3D printed (Chuck, Alexis, Soenke, Ben Reinhart)

Sample Plates

3D printed

Assembly of Sample Plate on Sample Frame

Robot

- How to get started.
 - <u>https://youtu.be/nFP_z5l68_g</u>
 - So many YouTube videos.
- Vendor's online training courses \leftarrow Short but very informative
 - https://www.universal-robots.com/academy/

Teach Pendant and Control box

Linux, Debian Many control I/O Communication: USB, Ethernet Comes with python2.7

Definition

TCP (Tool Center Point)

Forward and Inverse Kinematics

UR3: q: q1, q2, ..., q6

p: X, Y, Z, ax, ay, az TCP position and orientation.

Coordinate definition

How to program on the teach pendant

- Free drive to a position A
- Free drive to a position B
- Decide how you like to move from A to B
 - Movej : move minimum number of joints simultaneously
 - Movel
 - Movec
 - Movep
- If you want to wait for a signal, define the si
- Save and run
- The graphical program will be saved as a U
 - /data/program/*.script

Teaching waypoints

Advanced scripting

x11vnc

- Having the Pendant screen on your PC.
- Debian installation file can be obtained from the vendor (Tanaka).
- Steps to do:
 - Login to the control box using putty with an IP of 164.54.xxx.xxx.
 - Run x11VNC
 - Then on your windows computer, use a VNC client such as "VNC viewer" and connect to 164.54.xxx.xxx:5901

Operation of UR3

- GUI mode
- Script level (using UR Script) _____ 1.5 Function
- C-API level

A function is declared as follows:

```
def add(a, b):
    return a+b
end
The function can then be called like this:
result = add(1, 4)
```

It is also possible to give function arguments default values:

```
def add(a=0,b=0):
    return a+b
end
```

URScript also supports named parameters.

Interface for programming

- <u>https://www.universal-</u> <u>robots.com/articles/ur/interface-</u> <u>communication/overview-of-client-interfaces/</u>
- Primary/Secondary interfaces
 - Primary can send additional messages
- Real-time Interface
- RTDE interface
- Dashboard Server (controlled by sending simple commands to the GUI over a TCP/IP socket)
- Socket communication (UR robot became a client and Urscript provides socket commands)
 - For example, in polyscope, use 'socket_open',
- XML-RPC (to transfer structured data between programs over sockets)
 - For example, make the robot move using a pose retrieved from a remote camera. The remote camera program provides the next target pose based on the camera image analysis. The camera program can be python or C++.

Ideal for off-line programming. For example, to synchronize a real UR3 with a virtual one on a computer.

				e-S	eries				
	Primar	y	Second	econdary Real-tim		ne	Real-time Data Ex		change (RTDE)
Port no.	30001	30011	30002	30012	30003	30013	30004)4
Frequency [Hz]	10	10	10	10	500	500	500)
Receive	URScript commands	-	URScript commands	-	URScript commands	-	Various data		data
Transmit	See attach from the bo	ment ottom	See attach from the b	nment ottom	See attach from the b	nment ottom	See RTDE Guide		Guide
				CB-	Series				
	Prima	Primary		Secondary		Real-time		Real-time Data Exchange (RTDE)	
Port no.	30001	300	30	30002		30003		30013	30004
Frequency [Hz]	10	1(0	10	10		125	125	125
Receive	URScript URScript commands		-	UR com	Script Imands	-	Various data		
Transmit See attachment from bottom		nt from m	the See att	See attachment from the bottom		See attachment from the bottom		See RTDE Guide	

Python-URX

- Control the robot in REMOTE mode.
- Communicate through the real-time and secondary interface.
 - Main comm interface is the secondary.
 - Using real-time interface only for force sensing, which requires fast comm.
- https://github.com/SintefManufacturing/python-urx
 - Sending a UR script and execute
 - This has a script to control a "Robotiq Gripper"

	- 0			×		
	R+	Local	с с с с	≡		
riables						

o tasks.

es from the **Node List** and they will appear on

UR3 programming

class URRobot(object):

Python-urx

Uses URscript

- A command string
 - ✓ Ex) Set_gravity(5)
 - ✓ Ex) movej([1,1,1,1,1,1],a=1,v=1,r=1)
- A full program
 - ✓ def myProg():
 - ✓

✓ end

Support force mode and gripper.

```
Python interface to socket interface of UR robot.
   programs are send to port 30002
   data is read from secondary interface(10Hz?) and real-
time interface(125Hz) (called Matlab interface in documentation)
   Since parsing the RT interface uses som CPU, and does not support all robots
versions, it is disabled by default
   Rmq: A program sent to the robot i executed immendiatly and any running progr
   def init (self, host, use rt=False, use simulation=False):
       self.logger = logging.getLogger("urx")
       self.host = host
       self.csys = None
       self.logger.debug("Opening secondary monitor socket")
       self.secmon = ursecmon.SecondaryMonitor(self.host, use simulation) # dat
       self.rtmon = None
       if use rt:
           self.rtmon = self.get_realtime_monitor()
       self.joinEpsilon = 0.01
```

```
self.max_float_length = 6 # FIXME: check max length!!!
```

self.secmon.wait() # make sure we get data from robot before letting cli
access our methods

12-ID python codes

- Modification URX for 12IDB use
 - /home/beams15/S12IDB/python_codes
 - Enable force mode (This is the only part using RT).
 - Timeout time changed
 - The thread for "wait" is changed to prevent an infinite loop when a timeout occurs.
- 12ID code
 - Classes for basic operation: Robot12idb.py
 - Qt GUI : multiheaterWin2.py
 - Some other code to tweaking TCP (tweakRobot class in multiheaterWin2.py).
 - https://wiki.aps.anl.gov/s12id/index.php/UR3_Robot

Robot Control

Menu to control the UR robot using Robot12idb.py

Virtual Environment (offline programming)

CoppeliaSim

- Young Soo Park (Robotics, AMD), Summer students (Rian Simpson)

RoboDK

- The free version allow only one robot or a translator.
- Visual Component (SolidWorks)
 - <u>https://www.youtube.com/watch?v=JVxYZbDpu_8&ab_channel=VisualComponents</u>
 - OPC UA server/client
- Conversion of CAD file to step files
 - Brian Rusthoven (Design & Draft), Summer students
 - Made a simplified drawing version (Chuck and Byeongdu)

Future direction

- Autonomous experiment (Weekend users)
 - Self-positioning the robot by camera image analysis coupled with AI
 - Data acquisition and screening
- Easier virtual environment generation
 - A software program to convert complex 3D CAD into a simplified 3D SAT file.