APS-U Stepper Motor Connections

Beamline Controls Recommendations (DRAFT)

Kurt Goetze, Joe Sullivan APS/XSD/Beamline Controls

What it is:

- Recommendation for connecting common, low-power stepper motors and stages to typical controls hardware
- Good connections, electrically and mechanically, Economical
- Based on many years of BC Group experience and feedback from the APS beamlines

What it isn't:

- Comprehensive standard that covers every motor and connection situation
- High voltage or high current solution. Use vendor or Engineered/QEW solutions for systems above the hazard threshold, and of course DEEI inspect.

Why revise the APS stepper motor connections?

ELCO has worked reasonably well for decades but, the revised recommendation improves in the following ways:

- Robust, less fragile motor connector: TE Connectivity/AMP CPC \rightarrow
- Very good connection, electrically and mechanically
- Inexpensive
- Common, in-stock parts
- All parts (including cable!) available via AMOS vendors
 - (Newark has over 3,000 of the motor connector in stock at \$3.38/ea. in multiples of 25)
- Easy to terminate / modify motor connections
- Power separated from Signal wiring, run limits and home with db9
- TE Connectivity/AMP CPC Series1 motor connector is NRTL listed and rated to 600V. However:
 - These recommendations are for motor systems operating at less than 50V to the motors.
 - This covers most of the typical stepper motor systems in use at the APS.
 - For higher voltage systems (servos, etc.) it is recommended that the vendor's connectors/cabling be used.

Phytron/APSU 8-Ch ZMX+ Driver Unit Rear Panel

- Motor Power connector: TE Connectivity AMP CPC part no. 211769-1
- RJ45's, standard network-type, APS pinout
- Motor Power connectors pinout TBD

External Limits Power screw terms (routed out limits db9's)

RJ45 Connector Details

<u>RJ45 Pinout</u>

Pin, Function

1, Step+

- 2, Step-
- 3, Dir+

4, Lim+

- 5, Lim-
- 6, Dir-
- 7, Home
- 8, GND

8

db9 Encoder Connector Details

Encoder db9 Connector Pinout

Pin, Function

- 1, Index +
- 2, Phase A +
- 3, Phase B +
- 4, +V
- 5, Home
- 6, Index -
- 7, Phase A -
- 8, Phase B -
- 9, Gnd

Stepper Motor Coils Naming Convention

Stepper Motor Power Connector Details

TE Connectivity AMP CPC part no. 211769-1 (Chassis mount, Sockets) (see "motor cable" details for cable/connector part numbers)

- Up to 16 AWG wire to crimp-type sockets (10 Amps)
- Sockets: 1-66101-9
- Pins: 1-66099-5
- Crimp Tool: 58495-1
- Extraction Tool: 305183

2-Phase 4-Lead Stepper Motor Typical Connection

AMP CPC Pinout

Pin, Function

- 1, A+
- 2, B+
- 3, Lim+
- 4, A-
- 5, B-
- 6, Lim-
- 7, Home
- 8, +V supply
- 9, GND

2-Phase 6-Lead Stepper Motor Bipolar Connection (series)

2-Phase 8-Lead Stepper Motor Bipolar Half-Coil Connection

2-Phase 8-Lead Stepper Motor Bipolar Parallel Connection

Motor Cable

- 10-Conductor 18 AWG Alpha Wire 2245C SL005 ~\$480 at Digikey (AMOS) 100' Spool
 - Need to test
 - Possibly use a combined AWG (or custom?) cable
- Limits: Connected via AMP CPC connector
- Encoders: Connected via db9 to controller. APS standard pinout.

SHOP OUR DISTRIBUTORS

	North America	•	See	
	Distributor	1	10,000	
	Heilind Electronics 7,299 in stock	\$2.948	\$2.367	
	Mouser Electronics 1,637 in stock	\$4.530	\$2.630	
	Master Electronics 1,780 in stock	\$2.090	\$2.010	
	Online Components 1,780 in stock	\$2.090	\$2.010	
	Powell Electronics Inc. 932 in stock	\$2.120	\$1.980	
	Avnet Electronics 1,266 in stock	\$3.181	\$2.855	
\langle	Allied Electronics, Inc. 1,814 in stock	\$2.770	\$2.280	
	Arrow Electronics Inc. 3,518 in stock	\$2.092	\$2.092	
\langle	Digi-Key Electronics 1,296 in stock	\$4.340	\$2.346	
	Future Electronics 210 in stock	\$3.340	\$2.670	
	Sager Electronics 4,300 in stock	\$2.750	\$2.250	
	Newark element14 3,260 in stock	\$4.260	\$2.300	
	A.E. Petsche Co. 15 in stock			
	Interstate Connecting Comp. 7,299 in stock	\$2.948	\$2.401	
	Electro Enterprises Inc. 146 in stock	\$3.306	\$2.808	
	Carlton-Bates Company			

112 in stock

QUESTIONS:

- 1. Do we really want to change or modify our existing standard?
- 2. If so, how? CPC, NSLSII, Other...?
- 3. How do we come to a consensus?

Thanks!