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Tubale x-ray cavity
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A four-crystal (A,B,C, and D) x-ray optical cavity allows photon energy E tuning
in a broad range by changing the incidence angle Θ.
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R.M.J. Cotterill, Appl. Phys. Lett., 12 (1968) 403

K.-J. Kim, and Yu. Shvyd’ko, Phys. Rev. STAB (2009)

E = EH cos Θ

RA ×RB ×RC ×RD ×RM1 ×RM2 ' 0.9

TA ' 0.04

RX > 98%

Tunable Cavity
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Cotterill’s universal planar resonator
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A four-crystal (A,B,C, and D) x-ray optical cavity allows photon energy E tuning
in a broad range by changing the incidence angle Θ.
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K.-J. Kim, and Yu. Shvyd’ko, Phys. Rev. STAB (2009)

E = EH cos Θ

Tunable Cavity
with CRLs
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' ±100 eV tuning range is feasible.

XFELO Tunability
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A six-crystal (C1, C2, ... C6) x-ray optical cavity allows photon energy E tuning
in a broad range by changing the incidence angle Θ.
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Tunable Compact Non-Coplanar Cavity
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A six-crystal (C1, C2, ... C6) x-ray optical cavity allows photon energy E tuning
in a broad range by changing the incidence angle Θ.
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Yu. Shvyd’ko, Beam Dynamics Newsletter No. 60, April 2013, 68-83

Can be tuned easily by ∆E ' 1 keV E ' 14 keV

Tunable Compact Non-Coplanar Cavity
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• Crystal reflectivity > 98% reflectivity in backscattering

• Crystal endurance to ' 12 kW/mm2 irradiation.

• Efficient (> 98%) & wavefront preserving focusing/collimating optics

• Heat load problem: reflection band instability due to thermal variations . 1 meV.

• Angular stability: δθ . 20 nrad (rms)

• Spatial stability: δL . 3 µm (rms) → δL/L . 3× 10−8

XFELO Cavity Technical Challenges

XFELO Cavities APS March 15, 2019 foil 9/23



Diamond: superlative physical properties
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Record high reflectivity

for hard x-rays

Theory: > 99%

Yu. Shvyd’ko et al Nature Phys. (2010)
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Ultra-high thermal diffusivity

at low temperatures
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' 105 mm−2s @ 100 K

Courtesy of H. Sinn

D = k
ρcp

k - thermal conductivity
ρ - density
cp - specific heat capacity



Diamond: superlative physical properties
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Ultra-high thermal diffusivity

at low temperatures
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Ultra-low thermal expansion

at low temperatures

' 10−8 K−1 @ 100 K

S. Stoupin, Yu. Shvyd’ko PRL (2010)

S. Stoupin



Quality and Reflectivity of Diamond Crystals
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GE3

(a) 131 (b) 311 (c) 31̄1 (d) 13̄1

(e) 1̄3̄1 (f) 3̄1̄1 (g) 3̄11 (h) 1̄31

Stanislav Stoupin (APS, ANL) White-beam x-ray topography November 2011 9 / 10

x-ray white beam topography: Stoupin, 2011 (APS)

IIa, HTHP, from GE

25-30 Years Ago ...
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3rd International Conference on Diamonds for Modern Light Sources, Awaji Yumebutai, 20th-23th May 2008ESRF
15

Phase platePhase plate

White beam topograph  in transmission

7.1 mm

110-oriented plate

Dislocation free 
areas of 4x4mm2

and more!!!

1-1-1-reflection

Härtwig, 2008 (ESRF)

Progress in fabrication, char-
acterization, and X-ray optics
applications of synthetic high-
quality HTHP diamond of type-
IIa was substantial in the last
two decades:
Pal’yanov et al. (1990), Berman
et al. (1993), Freund (1995),
Sumiya and Satoh (1996), Fer-
nandez et al. (1997), Sellschop
et al. (2000), Sumiya et al.
(2000), Zhong et al. (2007),
Yabashi et al. (2007), Burns
et al. (2009), Polyakov et al.
(2011).

Crystals with > 4 × 4 mm2

defect-free areas Burns et al.
(2009), Polyakov et al. (2011)
is the state of the art.

Diamond Crystal Quality. State of the Art
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1

High-quality diamonds from Sumitomo

Sumiya & Tamasaku, JJAP 51 (2012) 090102
Courtesy of 

Kenji Tamasaku

Sumiya & Tamasaku JJAP 51 (2012) 090102 Courtesy of Kenji Tamasaku

High Quality Diamonds from Sumitomo
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Preselected diamond plates:

(001) orientation, 1mm thick

dislocation & stacking fault free

areas > 4× 4 mm2 and more

X-ray Lang topography
in transmission

Visible light image

V. Blank S. Terentyev

Technological Institute for Superhard

and New Carbon Materials (TISNCM)

Troitsk, Russia

Type-IIa, HTHP Diamond from TISNCM (I)
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Shvyd’ko, Stoupin, Blank, Terentyev, Nature Photonics 5 (2011) 539

Diamond Reflectivity Studies: C(008) @ 14.3 keV
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Shvyd’ko, Stoupin, Blank, Terentyev, Nature Photonics 5 (2011) 539

Diamond Reflectivity Studies: C(008) @ 14.3 keV
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' 99% reflectivity and close to theoretical performance.
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B = C = D > 300 µm; A� B,C,D

Outcoupling: I(0) ' 4× exp(−A/Λ̄H) H = (511), Λ̄ = 7.8 µm, E0 = 9.1 keV
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Outcoupling through Thin Diamond Crystals
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Outcoupling through Thin Diamond Crystals
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A few tens of microns thick perfect diamond single crystals, properly functioning
under Bragg diffraction conditions are required for outcoupling of x-rays.

Drumhead crystals, monolithic crystal structures
comprised of a thin membrane furnished with a
surrounding solid collar, are a solution ensuring
mechanically stable strain-free mounting of the
membranes with efficient thermal transport.

Almost flawless dia-
mond drumhead crystal
with a 25 µm thin
membrane in the (100)
orientation manufac-
tured by picosecond
laser milling.

Kolodziej, Vodnala, Terentyaev, Blank & Shvyd’ko (2016) J. Appl. Cryst. 49

Outcoupling through Drumhead Crystals
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Endurance of Diamond to Radiation Damage
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Endurance of Diamond to Radiation Damage
XFELO intracavity power: ' 20 W

XFELO intracavity power density: ' 12 kW/mm2

Can diamond preserve crystal integrity under the ' 12 kW/mm2

power-density loading in the XFELO cavity and
preserve the very high Bragg reflectivity?

T. Kolodziej
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Irradiation
chamber

Scattering
detector

Differential 
ion pumps

Irradiation experiment, APS, 7-ID-B

Power: P = 12.5 W (on the diamond)
Spot size: S = 50 µm * 20 µm = 1·10-3 mm2 

Power density: P/S= 12.5 kW/mm2

Vacuum:   1·10-8 Torr, ion pumps ON
                 4·10-6 Torr, ion pumps OFF, only turbo pumps

Unfocused beam burns a 
stainless steel bellow through 

in a few minutes.

Endurance of Diamond to Radiation Damage
Studies at the APS

T. Kolodziej et al., J. Synchrotron Rad. (2018) 25, 1022

XFELO Cavities APS March 15, 2019 foil 19/23



Endurance of Diamond to Radiation Damage
Studies at the APS

Diamond crystal after 12 kW/mm2 irradiation during 4 hours
Photograph

X-ray rocking-curve images
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Spot A: The high Bragg reflectivity of
the diamond crystals is preserved after
the irradiation, provided it is performed
at ' 1× 10−8 Torr high-vacuum condi-
tions.

Spot B: Irradiation under 4×10−6 Torr
results in a ' 1-meV shift of the Bragg
peak, which corresponds to a relative
lattice distortion of 4×10−8, while the
high Bragg reflectivity stays intact.

Diamond crystals survive the power loading in
the XFELO cavity and preserve very high re-
flectivity.

T. Kolodziej et al., J. Synchrotron Rad. (2018) 25, 1022
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XFELO optical cavities are feasible:

• Tunable XFELO cavities can be constructed.

• High-quality diamond crystals are available featuring ' 99% reflectivity.

• Coupling x-rays out of the cavity through a thin drumhead crystal is
possible.

• Diamond crystals survive ' 12 kW/mm2 power loading expected in the
XFELO cavity and preserve high reflectivity.

• Focusing mirrors/lenses appropriate for XFELO cavity are commercially
available.

• Heat load problem: simulations indicate that Bragg reflection region
variations can be . 1 meV.

• Angular stability ' 20 nrad (rms) can be achieved.

Summary
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XFELO Performance

K.J. Kim, R. Lindberg, et al

Performance:
• fully coherent hard x-ray source
• highest average spectral brightness
• meV spectral bandwidth
• ps pulses
• 109 photons/pulse (' 1 µJ)
• 1 MHz repetition rate.
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XFELO Performance =⇒ Applications

Science Opportunities with an XFELO
Workshop, APS, May 5th, 2010

Performance:
• fully coherent hard x-ray source
• highest average spectral brightness
• meV spectral bandwidth
• ps-pulses
• 109 photons/pulse
• 1 MHz repetition rate.

Applications:
• inelastic X-ray scattering (IXS)
• nuclear resonant spectroscopies
• photon correlation spectroscopy
• non-linear x-ray optics and spectroscopy
• imaging at near-atomic resolution (' 1 nm)
• x-ray comb generation
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Happy Birthday, Kwang-Je!
and Many More to Come
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