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Next Generation Photoinjector

We gather here on the Ides of March!

(A short speech, with apologies to William Shakespeare, Marc 
Anthony, Julius Caesar and English literature in general)

Friends, physicists, countrymen, lend me your ears;

I come to praise Kwang-je, not to bury him.

The theory that men do lives after them;

The good is oft embedded in impressive instruments…

2



Next Generation Photoinjector

Pre-history DC electron sources: the diode

Example: DC electron source with Pierce electrode geometry
- Space-charge limited laminar flow. Fields limited to ~10 MV/m

Child-Langmuir limit
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Change the rules of the game: 
introduce RF photoinjector

• Laser gating to sub-picosecond level
• Capture with RF – violent acceleration
• Manage strong time-dep. RF focusing 
• Preserve phase space structure

• Control pulse expansion
• Minimize emittance growth 
• Creation and manipulation of single 

component plasma

• Frontier RF engineering 
• Mastery of emerging laser technique
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Major impact: high brightness electron 
sources enable XFELs

• RF photoinjector appears ~1986, 
“mature” by 2000

• FEL active medium
• Ultra-high fields enable high 

currents and low emittances…
• High brightness

• In FEL 
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High brightness e-beams
beget >10 orders of magnitude 
in photon brightness. More to go?with 
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Complex Physical Scenario:
Enter Kwang-je Kim

• Tour-de-force analysis of beam dynamics and performance limits
• Set up the rules of the game
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Impact of Results: Scaling Guides 

• Introduce “Kwang-jeKimAlpha” RF strength 
𝛼𝛼𝑅𝑅𝑅𝑅 = 𝑒𝑒𝐸𝐸0𝑘𝑘𝑅𝑅𝑅𝑅/2𝑚𝑚𝑒𝑒𝑐𝑐2

Capture and compression…
• RF emittances 

𝜖𝜖𝑧𝑧,𝑅𝑅𝑅𝑅 = 3 𝛾𝛾𝑓𝑓 − 1 𝑘𝑘𝑅𝑅𝑅𝑅2 𝜎𝜎𝑧𝑧3

𝜖𝜖𝑥𝑥,𝑅𝑅𝑅𝑅 = 𝑘𝑘𝑅𝑅𝑅𝑅3 𝛼𝛼𝑅𝑅𝑅𝑅𝜎𝜎𝑥𝑥2 𝜎𝜎𝑧𝑧2/ 2
Important in high charge (e.g. wakefield acceleration, AWA), large 
beam applications 
• Space charge emittance limits (unified z and x) 

𝜖𝜖𝑖𝑖,𝑆𝑆𝑆𝑆 = 𝜋𝜋
4
𝐼𝐼
𝐼𝐼0

𝜇𝜇𝑖𝑖 𝐴𝐴
𝑘𝑘𝑅𝑅𝑅𝑅 sin 𝜙𝜙0
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Bow-tie phase space picture introduced for SC and RF effects 
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Reversing the bow-tie:
Emittance compensation

• Space-charge emittance 
evolution not monotonic in t

• Multiparticle simulations at 
LLNL (Carlsten) showed 
emittance oscillations, 
minimization possible: 
Emittance compensation

• Scaling laws? KJ Kim basis
• Analytical approach?
• Prescriptions for design

Multiparticle simulations (UCLA PARMELA)
Showing emittance oscillations and minimization
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Phase space picture: 
coherent oscillations

• Envelope oscillations 
proceed about 

• different equilibria,
• with different amplitude
• but at the same frequency

• Behavior leads to 
emittance oscillations
• Single component plasma

• “1st compensation”, after 
gun, before linac

Assume that beam is launched
at minimum (e.g. at cathode) 
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Envelope oscillations with acceleration 
near invariant envelope
• Linearized envelope equation

• Homogenous solution (independent of current)

• Normalized, projected phase space area oscillates, secularly 
damps as offset phase space (conserved!) moves in…

damping

oscillation

“offset phase space”

Oscillation (generalized matched 
plasma) frequency damps with energy
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Validation of  linear emittance 
compensation theory: LCLS injector

• Theory describes “linear” emittance oscillations
• “Slice” code (HOMDYN) developed that reproduce multiparticle 

simulations. Much faster! 
• S-band LCLS photoinjector working point discovered with HOMDYN

Dash: HOMDYN
Solid: PARMELA

Allowed generalization with scaling laws
- Foreseen by Kwang-je Kim analysis 
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Charge scaling

• All accelerator-focusing parameters including 𝜔𝜔𝑝𝑝 constant 
• Density and aspect ratio of the bunch must be preserved

𝜎𝜎𝑖𝑖 ∝ 𝑄𝑄1/3

• Contributions to emittance scale with powers of beam size
• Space-charge emittance
• RF/chromatic aberration emittance
• Thermal emittance
• Compensating beam is SC dominated, thermal emittances do 

not affect beam envelope evolution
• Compensation is preserved by keeping plasma frequency same
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Wavelength scaling
• First, make acceleration dynamics scale: 

and
• Focusing (betatron) wavenumbers must also scale (RF is naturally 

scaled, 𝐸𝐸0 ∝ 𝜆𝜆𝑅𝑅𝑅𝑅−1 ). Solenoid field scales as 𝐵𝐵0 ∝ 𝜆𝜆𝑅𝑅𝑅𝑅−1

• Correct scaling of beam size, and plasma frequency:
• All emittances scale rigorously as

• Guns in S-band -> C-and -> L-band

𝛼𝛼𝑅𝑅𝑅𝑅 ∝ 𝐸𝐸0𝜆𝜆𝑅𝑅𝑅𝑅 = const.
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Example: SC gun in L-band

Q  =1 nC
R  =1.69 mm
L  =19.8 ps
εth = 0.45 mm-mrad
Epeak = 60 MV/m (Gun)
Eacc   = 13 MV/m (Cryo1)
B     = 3 kG (Solenoid)

I   = 50 A
E  = 120 MeV
εn = 0.6 mm-mrad

εn
[mm-mrad]

z [m]

HOMDYN Simulation

6 MeV

3.3 m

•Scale Ferrario scenario to L-band, SC
•60 MV/m peak (30 average) gun field! 
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Dynamical beam shaping using 
longitudinal space-charge

• Assume surface charge density below maximum
• If surface charge density is uniform, leading edge of 

beam still defines cylinder – uniform beam 

• Luiten-Serafini proposal:
• Use any temporally shaped ultra-short pulse
• Expansion of well-chosen shaped radial profile
• Uniform ellipsoidal beam dynamically created!
• Linear space-charge fields (3D)

3D uniformly filled 
ellipsoid

Implicit in original KJ Kim paper – low emittance growth 
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Scaling of brightness at emission
•Brightness at cathode: 
•In 1D limit, peak current from a pulsed 
photocathode is 

•Brightness is

•Lower emission temperature and/or…
•Demands high launch field

•LCLS 120 MV/m (60 MV/m at injection)

16



Next Generation Photoinjector

Dramatically higher gradients in 
higher yield strength materials

• SLAC X-band studies on hard Cu, CuAg alloy show great 
improvement 

• Cryogenic structures (SLAC-UCLA) give lower dissipation, 
higher yield strength, small coefficient of thermal exp.

• Very high fields achievable

17

500 MV/m 
before
breakdown

A. D. Cahill, et al., Physical Review Accel. Beams 21, 102002 (2018)
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Insert into ultra-compact FEL recipe
• High field, short  undulator

• (with HBB), large 〉 , short Lg
• Micro-undulator

• High brightness beam (HBB)
• Ultralow emittance, enables use of micro-undulator

• Lower e- energy needed to reach short 
wavelength

• Much smaller accelerator, undulator

• Rethink the accelerator
• Same RF technology as HBB source – cryogenic 

copper with advanced designs 

• Recipe yields credible compact XFEL concept 

Hybrid cryo-undulator: Pr-based, 
SmCo sheath;  =9 mm up to 2.2 T 

J.B. Rosenzweig, et al., Nucl. Instruments Methods A, 593, 39 (2008) 

F.H. O’Shea et al, PRSTAB 13, 070702 (2010)
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Example for cryogenic ultra-high field 
photoinjector: S-band 
• UCLA-SLAC-INFN collaboration 
• S-band operation; option for LCLS-IIH, UEM

• Robust beam dynamics
• “Modest” peak design field: 250 MV/m 
• Operation at ~27K (LNe)
• Symmetrized RF design (dynamics)
• Overcoupled for “fast” <1 usec pulses
• Cavities optimized for low heat load
• 1.45 cells (~90° launch phase)

• Launch field up from present 60 MV/m to 
240 MV/m … x4! 

19

Coaxial
coupler

Mode-launcher
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Orienting to beam dynamics: “natural scaling” with 
RF frequency

• LCLS photoinjector run at ~120 MV/m
• Scale naturally to C-band @240 MV/m 
• Cigar beam regime (non-1D)

• Recent S-band study: 0.11 mm-mrad, at 200 pC
• Small changes to operating point (2.2 m to 1st linac)

20

S-band 
120 MV/m

C-band 
240 MV/mScale it! 
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Scaled C-band (5.7 GHz) example
• Fields x2: gun E0=240 MV/m, sol. B0=6 kG
• Distances/2: 35 MV/m C-band linac @1.1 m
• Charge scale with fRF

−1, to 100 pC
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Emittance is 55 nm! (v. 400 nm 
in present injector)
@ 20 A as expected…

Example of highly optimized
emittance compensation

S-band, similar optics, gives
~45 nm, and 20% reduction with 
collimating 5% of 200 pC beam
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ESASE ideal companion to short λu undulator 
• Low average current, small SC and resistive wall wakes

• Avoids full beam compression
• Simulation of 100 pC case with short period undulator 

LCLS infrastructure (XLEAP)
• Final compression 800A->8 kA
• Slippage managed at short λu

22
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ESASE results excellent
• C-band 100 pC (5 ps), 55 nm emittance
• Short period cryo-undulator, λ=9 mm, K=1.8 
• Operation at 14 GeV gives 80 keV X-ray
• Saturation in <20 m, with 70 GW peak

23
Current profile (10 kA) Energy evolution
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Compact XFEL: micro-machined undulator

λ scaling 
favorable

Scaling a
challenge

• Both advantages 
and challenges with 
new technology

24

How do we use this “weak” undulator (K<0.1)?
-Operate at low γ ! Coupling is K/γ 
-Higher gain medium: focus beam harder

Saturation limits B-field
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Currently Available

Technology Permanent magnet quadrupole
560 T/m

Inner diameter 5 mm

Tuning Axial translation of magnets

Future

Μachined electromagnets

>3,000 T/m
200 μm

Electromagnet

MEMS electromagnetic quadrupoles

200 μm

Top metal

Vias

Mag. flux density, x-component

Bore

Top View
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POP beams measurements

J. Harrison, Y. Hwang, O. Paydar, J. Wu, E. Threlkeld, J. Rosenzweig, and R. Candler, 
Phys. Rev. ST Accel. Beams 18, 023501 R. Candler presentation
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Microbunching with C-band compact linac
• Compression from 20 A to 400 A (both C-band and S-band)

• Studies ongoing

• ESASE approach with 10 um laser to compensate lower current 
• First results encouraging – enhance with “double buncher”

26

I (A)

-4               -2             0 2             4
z (um)

I (A)

10       20      30       40         50       60      70 
z (um)

Pulse train Single pulse 
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An Ultra-compact 1.5 Angstrom FEL 

• 1st steps: Current workshop!
• To be proposed to NSF as MRI (UCLA-SLAC team is core)

• Hosted at UCLA SAMURAI Laboratory

27

Electron beam and linac parameters X-ray FEL parameters

Peak accelerating field 𝐄𝐄𝟎𝟎 250 MV/m Undulator period 1.2 mm

Average accelerating field 125 MV/m Radiation wavelength 1.57 Å

Total beam charge 𝑸𝑸𝒃𝒃 200 pC Undulator strength 𝑲𝑲𝒖𝒖 0.12
Current before microbunching I 800 A Microbunching wavelength 3.2 𝛍𝛍m

Current after microbunching 𝐈𝐈𝐩𝐩 8 kA Beam rms spot size in undulator 3.1 𝛍𝛍m

Emittance 𝛜𝛜𝐱𝐱 45 nm-rad Micro-bunch length (FWHM) 320 nm

Electron energy U 1 GeV 3D gain length 𝐋𝐋𝐠𝐠,𝟑𝟑𝟑𝟑 14.5 cm
Relative rms energy spread 4.𝟖𝟖 × 𝟏𝟏𝟎𝟎−𝟒𝟒 Saturation length 2.9 m

Linac active length 8 m Saturation energy 125 𝛍𝛍J
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Compact  XFEL performance 
• Hard X-rays at 1.5 Angstrom 
• Saturating in 3 m
• Gain robust despite low K

• Coupling is K/γ, not K

• Total energy per pulse 125 µJ
• Far-field rms angle of 4 urad
• Footprint in 10’s of m
• New experimental possibilities

• Enhanced access, university scale
• Unique time structure for pump-probe
• Advanced technology for FELs (MaRIE()

• Now looking at soft X-rays
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Beyond FELs: Flat Beams from Photoinectors

• Seminal contribution from KJK
• First experiments at FNAL 
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Asymmetric emittances… for linear colliders 
• High Q, very low 4D emittance needed

• Eliminate expensive e- damping ring
• Very high field cryo-RF gun
• Current proposal to HEP test stand at UCLA SAMURAI

• SLAC-UCLA, with LANL

30

Solenoids

𝐵𝐵𝑧𝑧0 →

C-band 
RF gun

C-band linac section
Skew quadrupole array
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Round-to-flat beam transformation 
• Magnetize beam at cathode (~6 kG)
• Skew quads remove angular momentum 

ℒ = 𝑒𝑒𝐵𝐵0/2𝑚𝑚𝑐𝑐𝑐𝑐 𝜎𝜎02

• Split emittances 𝜀𝜀𝑦𝑦~𝜀𝜀02/ℒ , 𝜀𝜀𝑥𝑥~2ℒ
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𝜀𝜀0 minimized
by source brightness
and compensation

Final 𝜀𝜀𝑥𝑥 =1.9 mm-rad,
𝜀𝜀𝑦𝑦 =8 nm-mrad
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Happy Birthday, Kwang-je!
We are preparing your presents, in the 
form of interest compounded on your 
original physics investment
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