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Introduction

Isocitrate dehydrogenase from B. subtilis (BsIDH) is a
homodimeric Krebs cycle enzyme that catalyzes the
conversion of isocitrate to α-ketoglutarate with concomitant
reduction of NADP+ to NADPH. The E. coli homologue
(EcIDH) is regulated by reversible phosphorylation on a
sequestered active site serine (S113) [1]. Phosphorylation
essentially inactivates the enzyme by electrostatic repulsion
and steric hindrance with the polyanionic substrate, isocitrate
[1, 2]. Transfer of the phosphate moiety from ATP to the
target serine is catalyzed by a large 136 kDa bifunctional
homodimer, IDH kinase/phosphatase (IDH-K/P) [3].

Although the mechanism of inactivation in EcIDH has been
delineated, very little is known about the precise protein-
protein interface between EcIDH and IDH-K/P. We have
addressed this issue by more closely examining the substrate
specificity of IDH-K/P. Specifically, we assessed the ability
of BsIDH to serve as an alternate substrate since it is 69%
identical to its E. coli counterpart and 100% identical around
the phosphorylation site. Unexpectedly, kinetic data revealed
that BsIDH is actually an extremely poor substrate of IDH-
K/P, with Michaelis constants approximately 60-fold higher
for the kinase and 300-fold higher for the phosphatase.
Therefore, solving the crystal structure of BsIDH and
comparing it to that of the E. coli homologue became an
immediate goal.

Methods and Materials
.
Rod-shaped crystals of BsIDH (7.9 mg/ml) were grown via
hanging drop vapor diffusion against a solution of 100 mM
citrate (pH 4.9), 23% PEG4K, and 18% propylene glycol.
The protein crystallized as a dimer in the asymmetric unit
and a single crystal diffracted to 1.5 Å resolution. It belongs
to the monoclinic space group P21 and has the following
unit cell dimensions: a = 73.69 Å, b = 73.29 Å, c = 80.90
Å, and b = 109.48O. Diffraction data were collected at the
APS undulator beamline 19-ID of the Structural Biology
Center (SBC-CAT) with an x-ray wavelength of 1.0332 Å.
Intensities were integrated on site with DENZO and scaled
with SCALEPACK [4].

The structure of BsIDH was solved by molecular
replacement employing a monomer of EcIDH as the phase
probe. A cross-rotational search followed by Patterson-
correlation refinement and translational searches as
implemented in X-PLOR [5] revealed two unambiguous
peaks that were henceforth treated as the two monomers of
BsIDH. Because of large discrepancies between BsIDH and
the search model, particularly around a 13-amino-acid insert
in BsIDH, extensive rebuilding in the program O [6] was
required. This was followed by runs of simulated annealing,

positional, and individual B-factor refinement against bulk-
solvent corrected data, as implemented in X-PLOR [5].
Alternate cycles of model-building and reciprocal-space
refinement, along with the later addition of approximately
600 solvent molecules brought the R-factor and R-free [7]
down to their current values of 19.1% and 24.6%,
respectively. The present model of BsIDH has 844/846
amino acids, 620 waters, five molecules of propylene
glycol, and alternate conformations for 16 residues. The
model exhibits good stereochemistry with 90.2% of the
amino acids in the most favored region of the Ramachandran
diagram [8].

Results and Discussion

Analysis of the BsIDH structure demonstrates that it is
extremely similar to the EcIDH, as was predicted from the
extensive sequence homology. Like EcIDH, it functions as a
homodimer physiologically and consists of large, small, and
clasp domains. The active site amino acids are virtually
superimposable, with only minor perturbations in the
positions of a few residues. The primary deviation between
the two proteins is the marked secondary structure difference
spanning a ~35 residue region in the small domain. In
EcIDH, this area is composed of nonpolar residues in the
form of two antiparallel β-strands; in BsIDH, on the other
hand, this area is comprised of primarily polar residues
adopting a α-helical configuration. Furthermore, the
presence of a 13-amino-acid insert in BsIDH extends this
region further across the active site cleft of the other
monomer.

 A second, more subtle difference between the two enzymes
centers on a three-residue loop (98–100 in BsIDH; 107–109
in EcIDH) that is bent inward in BsIDH, narrowing the
opening to the active site cleft from 19.1 Å to 14.6 Å. A
third difference focuses on an apparent heterogeneity between
the two monomers of BsIDH. The two monomers of EcIDH
are related by a crystallographic twofold axis, and they are
exactly the same. However, the two monomers of BsIDH are
related by a noncrystallographic dyad axis and have an
RMSD > 0.6 A.
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