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Inelastic nuclear resonant absorption (INRA) of syn-

chrotron radiation is a unique technique to study phonon

excitations [1, 2]. The inelastic excitation of nuclear res-

onance was studied theoretically in the 1960s [3, 4]. In

contrast to the M�ossbauer e�ect, for which the recoilless

excitations are studied, this inelastic approach exploits

the energy transfer between x-rays and lattice. Because

only a particular type of isotope can be resonantly ex-

cited by x-rays with energy close to its resonant energy,

this method provides a way to study the dynamics of

selected atoms, i.e., nuclear resonant isotopes.

The resonant excitation, both elastic and inelastic, can

be observed by detecting nuclear decay products. When

the nuclear resonant lifetime is much longer than the

synchrotron pulse length and the time scale of electronic

scattering process, the nuclear resonant scattering pro-

cess is distinguished by counting signals only after the

disappearance of the prompt radiation and electronic

scattering. This leads to an enormous background sup-

pression. Thus noise level is basically determined by the

detector and the associated electronics, which can be

suppressed well below the signal level in most cases.

The experimental setup for INRA is shown in Fig. 1.

The pre-monochromator reduces the x-ray energy band-

width to a few eV and removes most of the heat load in

the beam. The high-resolution monochromator further

reduces the energy bandwidth to meV or less, which is

the experimental resolution needed to study phonon ex-

citations. The detector is placed very close to the sample

to collect as many nuclear decay signals as possible. The

intensity of delayed signal is proportional to nuclear res-

onant excitation cross section, which in turn is propor-

tional to a Fourier transform, S(";k), of the autocorre-

lation function of the scattering system [4]. The reason

it is related to the auto- rather than the pair-correlation

is that the inelastic resonant absorption is an incoher-

ent process. In general, S(";k) depends on the incident

photon momentum k. But in certain cases, e.g., for an
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Figure 1: The experimental setup of inelastic nuclear

resonant scattering experiments.

isotropic lattice, this dependence can be dropped.

S(";k) =
1

N

Z
dt

2�
e�i"t

X
i

gi hij
X
l

e�ikrl(0) eikrl(t)jii ;

(1)

where N is the number of resonant nuclei, �0 is the max-

imum resonant excitation cross section, and � is the nat-

ural linewidth of the resonance. The gi is the statistical

weight factor of initial lattice state jii. The rl is the

position of the l-th resonant nucleus.

In resonant absorption, there is a sudden momentum

transfer and thus moment sum rules apply [5],
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where ER is the recoil energy,m the nuclear mass, Tk the

mean kinetic energy of the resonant nuclei in the k di-

rection, and Fk the mean force constant experienced by

the resonant nuclei in the k direction. While the higher

moments give us information on vibrational dynamics of

sample, the �rst moment is employed to normalize the

spectrum and determine the recoilless fraction. The mo-

ments of S(") can be calculated [6] from those of exper-

imentally measured 
ux, Im("), which is a convolution

involving the instrument resolution function R(").
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Figure 2: The data taken on an �-Fe foil, with energy

resolution of 0.9 meV. The insert shows the same data

on a log scale.

We measured an enriched �-Fe foil by INRA with an

energy resolution of 0.9meV [7]. A spectrum is shown in

Fig. 2. The center spike is the elastic peak resulting from
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Figure 3: The single and multiple phonon contributions

to S0("). The inset shows S0

2(") and S
0

3(") on an enlarged

scale.

the recoilless nuclear resonant excitation. The inelastic

excitation is clearly seen in the spectrum and extends to

about 80 meV away from the peak. The low-energy side

of the spectrum corresponds to phonon annihilation, the

high-energy side, phonon creation.

The elastic part of the function S(") is appreciably

larger than the inelastic part. In the case of enriched

iron metal, the former is six orders of magnitude larger.

However, the elastic peak is suppressed in the measured

spectrum, due to exactly the large cross section and the

strong absorption of x-rays with the exact resonant en-

ergy that results in small penetration depth and less ma-

terial contributing to the elastic peak. So, the �rst step

in data evaluation is to �t the elastic peak with the in-

strument resolution function and remove the peak from

the spectrum. Then one must to normalize the spectrum

and at the same time determine the recoilless fraction.

Because the elastic peak is suppressed by an unknown

factor, it cannot be normalized by simply integrating

the spectrum. Instead, we replace the elastic peak by

the theoretically expected,

I(") = aS(") = a [S0(") + f Æ(")] ; (5)

where a and f can be solved as follows,
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With the normalized spectrum, the mean kinetic en-

ergy and the mean force constant experienced by the

nuclei are derived by the sum rules (Eqs. 3 and 4). In

this experiment, the recoilless fraction f is found to be

0.796(2), the mean kinetic energy per nucleus 42.9(3)

meV, and the mean force constant 1:74(6)� 108 N/m.

Finally, if a harmonic lattice model is assumed, the

inelastic part of the function S(") can be further sep-

arated into single- and multiphonon contributions, i.e.,
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Figure 4: The phonon DOS of �-Fe(circles), compared

with a neutron result(solid line).

S0(") = S0

1(") + S0

2(") + S0

3(") + � � �. These terms fol-

low certain recursive relations and can be calculated by

the method of Fourier-Log decomposition (Fig. 3). The

phonon density of states per unit energy per atomic vol-

ume, D("), is related to the single-phonon term [4, 2],

D(") = 3
"

ER

S0

1(")

f
[1� exp(�

"

kBT
)] : (8)

The above-mentioned Fourier-Log decomposition is car-

ried out to separate multiphonon contributions (Fig. 3)

and to extract the phonon DOS (Fig. 4). The single

phonon contribution can be seen to dominate and it can

be attributed to the high recoilless fraction of 0.796 of

�-iron. The phonon DOS derived from the experiment

is compared with the calculated DOS from coherent in-

elastic neutron scattering data [8].
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