Intense Broadband Terahertz from FACET at SLAC

Alan Fisher and Ziran Wu
SLAC National Accelerator Laboratory

Workshop on Terahertz Sources
Argonne National Laboratory
2012 July 30-31
Purpose

- Longitudinal diagnostics of compressed electron bunches
- High peak fields for THz science
The FACET User Facility at SLAC

- Facility for Advanced Accelerator Experimental Tests
 - Provides highly compressed e^- (and soon e^+) bunches at high energy and with high charge
 - Uses the first 2 km of the SLAC linac

- Experiments include:
 - Plasma wakefield acceleration
 - Dielectric wakefield acceleration
 - Ultrafast magnetic switching
 - Smith-Purcell radiation
 - Terahertz radiation
FACET Beam Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>2012 Run Typical</th>
<th>2012 Run Best</th>
<th>Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>20.35</td>
<td>21.1</td>
<td>23 GeV</td>
</tr>
<tr>
<td>Charge</td>
<td>2.5–2.9</td>
<td>3.2</td>
<td>3.2 nC</td>
</tr>
<tr>
<td>Size at focus (σ_x)</td>
<td>35</td>
<td>20</td>
<td>20 µm</td>
</tr>
<tr>
<td>(σ_y)</td>
<td>35</td>
<td>23</td>
<td>20 µm</td>
</tr>
<tr>
<td>Bunch length (σ_z)</td>
<td>25–30</td>
<td><25</td>
<td><20 µm</td>
</tr>
<tr>
<td>(σ_t)</td>
<td>83–100</td>
<td><83</td>
<td><67 fs</td>
</tr>
<tr>
<td>Repetition rate</td>
<td>10</td>
<td>10</td>
<td>30 Hz</td>
</tr>
</tbody>
</table>
THz source: Coherent transition radiation from two 1-μm-thick Ti foils
- 10–14 m before main focus at experiments on the IP Table
- Allows parasitic operation and use of THz for beam diagnostics
- But e-beam at THz foil is larger than at IP
Upstream IP Table
IP Tables
THz Table with Dry-Air Enclosure
Layout of the THz Table

Top View

From bunch compressor
1-µm Ti foil
Visible
Insertable silicon plate
THz
OAP
Knife-edge (Sample stage)
Total-energy Detector
Pyro
Pyro
Reference Detector
Michelson Detector
Michelson Interferometer

Side View

To IP
Optics for Upstream Foil

- OAP
- Foil
- Knife edge
- Joulemeter
- To Michelson
Finding the Peak Electric Field

- Electric field at the focus modeled as a Gaussian
 \[E = E_0 \exp \left[-\frac{1}{2} \left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} + \frac{z^2}{\sigma_z^2} \right) \right] \]

- Energy in the pulse
 \[W = \iiint \frac{1}{2} \varepsilon_0 E^2 dx \, dy \, dz = \frac{1}{2} \pi^{3/2} \varepsilon_0 E_0^2 \sigma_x \sigma_y \sigma_z \]

- Dependence on bunch charge \(q \), bunch compression \(\sigma_z \):
 - Field \(E_0 \sim q/\sigma_z \)
 - Energy \(W \sim E_0^2 \sigma_z \sim q^2/\sigma_z \)

- Coherence
 - Less energy, due to incoherent emission, for wavelengths \(\lambda \leq \sigma_{x,y,z} \)

- Measurements needed:
 - Knife-edge scans, for widths of focus \(\sigma_{x,y} \)
 - Michelson interferometer, for pulse duration \(\sigma_t = \sigma_z/c \)
 - Pyroelectric joulemeter, for pulse energy \(W \)
Knife-Edge Scans at a THz Focus

Horizontal Profile

Vertical Profile

Knife-Edge Scan and Fit to Error Function

\[\mu = 14.721 \text{ mm} \]
\[\sigma = 1.357 \text{ mm} \]

Knife-Edge Scan and Fit to Error Function

\[\mu = 16.879 \text{ mm} \]
\[\sigma = 1.085 \text{ mm} \]
Standard Electron Optics near the THz Table

Large x beam size at THz table: Reduces power.

Minimum beam size at experimental IP:
Transverse e-Beam Size

Simulated beam with standard optics:

$$\sigma_x = 1.2 \text{ mm}, \sigma_y = 6 \mu\text{m}$$

Measured with optical transition radiation
Refocus to Reduce Transverse e-Beam Size

Simulation comparing standard optics to a circular 85-µm beam

“Double Waist”: Focus remains at IP, but x size at foil is reduced:

$$\sigma_x = 317 \, \mu\text{m}, \sigma_y = 36 \, \mu\text{m}$$
Scan of the Michelson Interferometer

Interferogram

Spectrum

Reflections from detector layers lead to spectral modulation.
Restoring Low Frequencies and Phase

- Model low-frequency loss as a filter:
 \[1 - \exp\left(-f^2/f_0^2\right) \]
- Divide by filter, except very near \(f = 0 \)
 - Just fit a parabola near \(f = 0 \)
 - Result is not very sensitive to fit

Kramers-Kronig relations give phase from magnitude of form factor \(f(\omega) \)
- Inverse transform gives distribution \(f(t) \)
Profiles at Three Bunch Compressions

High Compression

- Gaussian width for points >= 10% of peak
- $\sigma_1 = 95$ fs
- $\sigma_2 = 26 \mu m$

Medium Compression

- Gaussian width for points >= 10% of peak
- $\sigma_1 = 144$ fs
- $\sigma_2 = 43 \mu m$

Low Compression

- Gaussian width for points >= 10% of peak
- $\sigma_1 = 544$ fs
- $\sigma_2 = 163 \mu m$
Peak Electric Field

- In the case just shown:
 - Charge of 3 nC
 - Energy in the pulse $W = 0.46$ mJ
 - The large σ_x of standard electron optics gives 0.35 mJ
 - $\sigma_x = 1.36$ mm, $\sigma_y = 1.08$ mm
 - $\sigma_z = 39$ µm
 - $E = 5.7$ MV/cm

- Measured under other conditions (but not at one time):
 - Energy = 0.7 mJ
 - Bunch length = 25 µm
 - These would give 8.8 MV/cm (≈ 0.088 V/Å)

- Higher fields should be possible with a smaller beam at the foil
 - But not too small: The beam has drilled holes through 1-µm Ti foils at the IP focus
Transporting THz up to the Klystron Gallery

- First stage: Transport THz from the downstream foil to a small table in the Klystron Gallery
 - Now beginning detailed engineering
 - 19-m path, including an 8-m vertical section up through a penetration
 - Characterize pulse before and after transport: energy, focus, spectrum

- Severe diffraction of these long wavelengths
 - Large-diameter mirrors and tubing: 200 mm (8 inches)
 - Frequent refocusing with a lattice of off-axis parabolic (OAP) mirrors
 - Alternately collimating and focusing to a waist
 - Toroidal mirrors may be better for the long focal lengths at bottom and top of penetration
 - Evacuate to remove water vapor and convection (UHV unnecessary)

- Next stage: Another 20 m to the Sector-20 laser building
 - User experiments, including THz pump and laser probe
We have characterized intense THz from CTR at FACET

- Energy \(\sim 0.5 \text{ mJ} \)
- Focus size \(\sim 1 \text{ mm} \)
- Spectrum \(\sim 1 \text{ THz} \)
- Bunch length \(\sim 25 \text{ fs} \)
- Electric fields \(\sim 6 \text{ MV/cm} \)

Higher fields should be possible with more bunch compression and charge, and a smaller transverse beam size

- But foil breakage could be a problem

Upgrades in planning

- Tests of other foil materials
- Tests of other detectors
- THz transport line to a user area above the tunnel
Finding the Form Factor of the Bunch

- Electric field E of a bunch of N electrons at positions t_j:

$$E(t) = \sum_{j=1}^{N} E_1(t - t_j) \quad E(\omega) = E_1(\omega) \sum_{j} e^{-i\omega t_j}$$

 - Here E_1 is the field of one electron

- Energy in the pulse is related to the longitudinal “form factor” $f(\omega)$:

$$U_0 = \int dt \ E^2(t) = \int \frac{d\omega}{2\pi} |E_1(\omega)|^2 \left| \sum_{j} e^{-i\omega t_j} \right|^2 = N^2 \int \frac{d\omega}{2\pi} |E_1(\omega)|^2 |f(\omega)|^2$$

- Interferometer gives the pulse energy in an autocorrelation with a delay τ:

$$U(\tau) = U_0 + \text{Re} \int \frac{d\omega}{2\pi} |E_1(\omega)|^2 |f(\omega)|^2 e^{i\omega \tau}$$

- The power spectrum $U(\omega)$ is then (neglecting the DC component):

$$U(\omega) = |E_1(\omega)|^2 |f(\omega)|^2$$

- E_1 is essentially constant at THz frequencies, and so $U(\omega)$ gives us $|f(\omega)|^2$
If we express $f(\omega)$ in terms of its magnitude $\rho(\omega)$ and phase $\psi(\omega)$, then:

$$\ln f(\omega) = \ln \rho(\omega) + i\psi(\omega)$$

Since $\ln f(t)$ is causal, and since ρ and ψ are real, they obey the Kramers-Kronig relations, which give:

$$\psi(\omega) = -\frac{2\omega}{\pi} \text{P} \int_0^\infty d\omega' \frac{\ln[\rho(\omega')/\rho(\omega)]}{\omega'^2 - \omega^2}$$

The magnitude and phase then let us find $f(t)$.
Detector Response

- THz detectors are poorly calibrated and are not spectrally flat
 - Significant etalon effects (reflections from detector layers)

- Infratec has strong modulation
 - Dip in response near 0.8 THz cuts out part of spectrum
 - Not suitable for interferometer
 - Compare to model (Henrik Loos)

- Gentec has thinner layers
 - 60-GHz modulation
 - When 60 GHz is filtered, 240 GHz becomes visible
 - Better, but not ideal

![Graph showing detector response](image)
Water Vapor

- Before and after adding the dry-air enclosure
 - Compare to transmission through 1-m of humid air

- Without dry-air enclosure
 - Dips near 0.75 and 1.2 THz
 - 3 bunch compressor settings

- With dry-air enclosure
 - Much improved, but there may still be some absorption
 - Will increase flow of dry air
Transport Line

Pumping flange

Flange with mirror mount

Bellows
- Flexibility
- Breaks up reflections from pipe wall

Alignment viewport
- View HeNe alignment beam directly or with a camera

200-mm (8-inch) tubing
This workshop is focused on exploring and defining scientific opportunities associated with THz radiation in a wide range of scientific fields.