

Outline Motivation to use more than a single measurement Anomalous dispersion (resonant scattering) X-rays + neutrons Hard & soft constraints Combined refinement case studies What can go wrong with combined refinements

Why? -- Limitations of a single diffraction measurement

All a single x-ray diffraction measurement can tell you is how many electrons are present at an atomic site.

Example: find amounts of Fe & Ti sharing a site in a perovskite $f_{site} = n_{Fe}f_{Fe}(Q) + n_{Ti}f_{Ti}(Q)$ where $f_{Fe}(Q)/26 \cong f_{Ti}(Q)/22$

one observable: f_{site} but two unknowns: n_{Fe} and n_{Ti}

One approach to solving this: assumptions Assume no vacancies: $n_{Fe} = 1 - n_{Ti}$ Assume total composition is known: works if only one Fe/Ti site

Argonne

Argonne

Conclusions

- A single powder diffraction measurement may not provide enough information to fully determine a structure
- Use of additional observations may allow for more to be learned
- Be careful that your derived result is not a direct outcome from your assumptions
- When using multiple measurements, make sure the observations are consistent

9