Opportunities for x-ray POLARization control in APS-U

Daniel Haskel
Magnetic Materials Group

APS-U forum
April 12, 2018
Polarization control is key in probing electronic order, anisotropic structures

Lack of polarization control can present limitations (Linear-H at APS)

Scattering in horizontal plane: intensity reduction
Micro/Nano probes: phase speciation, valence
Polarization control at APS (hard x-rays): Phase plates
(softer x-ray beamlines 4-ID-C/29-ID: polarizing EM undulators)

- Large attenuation (x5-30 for 2.8-14 keV)
- Small footprint and angular offset at high E (limited to ~ 14 keV at 4-ID-D)
- Asymmetry between LCP, RCP incident intensity (5-30%)
- Incomplete linear-vertical polarization; improved with tandem plates (but more attenuation)

Goal:
Increase flux 2.7-14 keV, enable 14-27 keV range
LCP, RCP, L-H, L-V with high degree of polarization
Preserve fast polarization switching

\[\Delta \theta \propto \lambda^3 I \]

Courtesy JC Lang
Opportunity APS-U

Round ID vacuum chambers

Polarizing superconducting undulators

Overcomes limitations of phase plates (polarized flux, energy range)

Courtesy L. Emery
Round ID vacuum chambers: novel SC undulators

Planar SCU

Current direction in coil
Period

Bx=By (Φ=90°)

“SCAPE” SCU
L-H, L-V, LCP, RCP
Efim Gluskin, Yury Ivanyushenkov

Round ID vacuum chamber

Model by Joel Fuerst
SuperConducting Arbitrarily Polarizing Emitter: “SCAPE”

- Large polarized flux gains 2.7-14 keV; enables 14-27 keV
- LCP, RCP, elliptical, L-H, L-V

![Diagram of SuperConducting Arbitrarily Polarizing Emitter (SCAPE) Helical](image)

New capability

How about rapid polarization switching? (small dichroic signals)

I~ 400 Amps at “closed gap” (K ~ 2.6)

Tuning curves: R. Dejus
Polarization modulation with phase plates (~ 10 Hz) versus slow (several secs) polarization switching

Needs to switch polarization at every energy point in resonant scans

- Polarization switching with single SCAPE device: several minutes
- Goal: Modulate polarization (LCP/RCP or L-H/L-V) at 10 Hz or faster, detect related modulation in absorption coefficient (XMCD, XMLD) with lock-in amplifier
Rapid Polarization Switching: Scheme 1

- Local, alternating electron orbit bumps
- ~30 micro-rad bumps sufficient to achieve desired rejection (polarization purity)

- Operational at two soft x-ray beamlines in Spring-8 (1-10 Hz)
- Commissioned at soft x-ray beamline at DLS (few Hz)
- Both with 200 μrad orbit bumps (beam divergence $\sim \sqrt{\lambda}$)

Hara et al, SPRING-8; Steadman et al, DLS
Rapid polarization switching: Scheme 1

Square box: 0.5x0.5 mm² aperture at 25 m (20 μrad)

Leakage off-axis radiation

Calculations: R. Reininger

Power on mono
Rapid polarization switching: Scheme 2

- Alternating undulator current bumps shift harmonic energy by BW; monochromator filters
- ~5-10 Amps (few % change in K/current value) sufficient to achieve desired rejection

Calculations: R. Dejus
Rapid polarization switching: Scheme 2

- Does not directly perturb electron orbit
- 3-6% change in K value translates to 5-10 Amp current change
- Suppression factors x50-400 means polarization purity 98% or better
- Expects 1 Hz achievable with standard NbTi wire used in planar SC undulators
- Magnetic devices group exploring use of secondary coils made of special “AC friendly” NbTi wire to modulate the small extra current at higher frequencies

8 keV Circular
x100 suppression

8 keV Linear
x50 suppression

~ 13 keV Elliptical
X400 suppression

APS-U Forum, April 12, 2018

Argonne National Laboratory
Other applications

Quick XAFS/XAS

Nano/micro probes: Polarization-dependent XAS/scattering (can’t rotate sample)

Horizontal scattering: flux starved experiments (IXS)

Circular mode: off-axis harmonics, low on-axis power

Wavefront preservation without harmonic rejection mirrors (helical SCU @ 7-ID)
Summary

• Round ID vacuum chambers enabled by on-axis injection in APS-U allow implementation of novel IDs for polarization control (e.g. SCAPE)

• Major improvement relative to phase plates for generation of LCP, RCP, L-V polarization: x10 average flux gains in 3-14 keV, extend to resonances in the 15-27 keV (5f, 4d systems)

• More than one route to fast polarization modulation for detection of small dichroic signals: Electron orbit bumps (implemented at Spring-8&DLS) / undulator current bumps (new, R&D) APS has significant experience with SC undulators and fast switching EM undulators (CPU at 4-ID-C)

• May find applications in other techniques: quick-XAFS, micro/nanoprobes, IXS, wavefront preservation, etc

• POLAR beamline plans to use in-line SCAPE undulators for fast polarization switching
Contributors

- Yury Ivanyushenkov, Efim Gluskin, Ibrahim Kesgin, Joel Fuerst and rest of Magnetic Devices group: “SCAPE” undulator
- Mohan Ramanathan: ID related topics
- Louis Emery: Accelerator Physics
- Ruben Reininger, Xianbo Shi: Optics/Radiation properties/simulations
- Roger Dejus: ID tuning curves
- Joerg Strempfer, Jonathan Lang, Tim Graber: Polarization, phase plates
- MM group members