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1 Introduction

The program elegant performs symplectic integration for hard-edge dipoles and multipoles using
the exact Hamiltonian. This method is not original but was cobbled together from studying several
sources, e.g., [1] and [2].

We begin with a discussion of methods used for combined-function magnets for which the field
expansion is defined in traditional beam-following coordinates. Following that, we describe a new
method for integrating dipole magnets for which the field expansion is defined in Cartesian coordi-
nates.

2 Hamiltonian and Definitions

The exact Hamiltonian for a combined function sector bend is[1]

H = −eAs(x, y)

c
− (1 + h0x)

√

E2

c2
−m2c2 − p2x − p2y, (1)

where As is the scalar magnetic potential, E is the energy, h0 is the design curvature of the magnet,
px is the transverse horizontal momentum, and py is the transverse vertical momentum. Defining
(1 + δ) = p/p0, qx = px/p0, and qy = py/p0, we have

H = Hf +Hd (2)

where

Hf = −eAs(x, y)

p0
(3)

is the part of the Hamiltonian pertaining to fields and

Hd = − (1 + h0x)
√

(1 + δ)2 − q2x − q2y. (4)

is the Hamiltonian for a generalized drift (possibly in curvilinear coordinates if h0 6= 0).

3 Coordinate Transformations

Because it was originally a matrix tracking code, elegant uses trace-space coordinates (x, x′, y, y′, s, δ)
instead of canonical coordinates. Hence, it is necessary to transform between trace space and canon-
ical coordinates.

To transform to canonical coordinates, we make use of the fact that dx
ds

= qx/qz and dy
ds

= qy/qz,
where q2x + q2y + q2z = (1 + δ)2 defines qz . Hence,

qx = x′(1+δ)√
1+x′2+y′2

qy = y′(1+δ)√
1+x′2+y′2

.
(5)

At the exit of the element, we reverse the transformations using

x′ = qx√
(1+δ)2−q2

x
−q2

y

y′ =
qy√

(1+δ)2−q2
x
−q2

y

.
(6)
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4 Integration for a Curvilinear Dipole

The motion will be integrated using a drift-kick-drift technique (perhaps in higher order). For a
drift, Hamilton’s equations for the momenta are

dqx
ds

= −∂Hd

∂x
= h0

√

f2 − q2x, (7)

and
dqy
ds

= −∂Hd

∂y
= 0, (8)

where f =
√

(1 + δ)2 − q2y is a constant during the drift. Equation (7) is solved by

qx(s) = f sin(h0s+ φ), (9)

where φ = sin−1 qx(0)/f .
For the coordinates, we have

dx

ds
=

∂Hd

∂qx
=

qx(1 + h0x)
√

f2 − q2x
, (10)

and
dy

ds
=

∂Hd

∂qy
=

qy(1 + h0x)
√

f2 − q2x
. (11)

Using Equation (9) we can rewrite Equation 10 as

∫ x(s)

x(0)

dx

1 + h0x
=

∫ s

0

tan(h0s+ φ), (12)

giving

x(s) =
1

h0

(

−1 + (1 + h0x(0))
cosφ

cos(h0s+ φ)

)

(13)

Using this, we can integrate Equation (11), obtaining

y(s) = y(0) +
1 + h0x(0)

fh0
qy cosφ (tan(h0s+ φ)− tanφ) . (14)

For the kicks, we refer to the Hf part of the Hamiltonian, giving

dqx
ds

=
e

p0

∂As

∂x
= −eBy

p0
(15)

and
dqy
ds

=
e

p0

∂As

∂y
=

eBx

p0
. (16)

Derivation of the expressions for Bx and By is beyond the scope of this note, but uses the recursion
technique [3, 4]. In the case of a bending magnet, this is limited to 10th order in x and y.

The kicks are imparted per

∆qx = −∆s
By

R
(1 + h0x) (17)

and

∆qy = ∆s
Bx

R
(1 + h0x), (18)

where R is the beam rigidity and the (1 + h0x) factors include the lengthening of the interval due

to a beam offset. One might argue that this factor should be
√

1 + x′2 + y′2 + h0x, but then we’d
have a kick depending on the momenta, which is not symplectic.

These equations are used to integrate motion in elegant’s CSBEND and CSRCSBEND elements.
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5 Integration for a Non-bending Multipole

In the case where h0 = 0, the expressions are considerably simplified. In particular, both qx and qy
are constant in the drift portion. Hence,

x(s) = x(0) +
qxs

√

f2 − q2x
(19)

and
y(s) = y(0) +

qys
√

f2 − q2x
. (20)

The expressions for the kicks are given by Equations (17) and (18) with h0 = 0.
These equations are used to integrate motion in several of elegant’s elements:

• KQUAD — Quadrupole magnets, with optional fringe effects, error multipoles, and steering
fields.

• KSEXT— Sextuple magnets, with optional weak skew and normal quadrupole, error multipoles,
and steering fields.

• KOCT — Octupole magnets, with optional error multipoles.

• KQUSE — Combined quadrupole and sextupole magnets.

• FMULT — A general combination of many multipoles, specified from a data file.

• MULT — A general, single multipole

6 Integration for a Straight-pole Combined-function Dipole

A unfortunate fact of life in accelerator modeling is that codes assume that the multipole content of
dipole magnets is specified in curvilinear (beam-following) coordinates, whereas magnets are often
built with straight poles. This is a particular concern with combined-function magnets, since for
example in curvilinear coordinates the local bending radius of a straight-pole magnet will vary along
the reference trajectory, whereas in the codes it is assumed that the bending radius is constant along
the reference trajectory. This is an issue even for separated-function dipoles, since the multipole
errors are defined in the curvilinear coordinate system.

There are several approaches in use to address this. One is to split the dipole into segments with
different bending radii and multipole content; this ignores the vertical focusing that results from the
longitudinal fields that are necessarily present when the bending field varies. Another approach is
to numerically integrate through simulated field maps, perhaps using such integration to construct
a symplectic map; as we’ve found, this is easier said than done.

In this section, we present a new method of modeling dipoles that addresses this long-standing
deficiency. This method was implemented in the CCBEND element, available since version 34.1.0 (27
February 2018).

6.1 Concept

elegant has several elements, such as KQUAD and KSEXT, that provide symplectic modeling of fairly
general straight, hard-edge magnets. The modeling method is described in detail above. There
is nothing in this method that restricts the type of fields, as long as the fields can be described
as a multipole expansion in Cartesian coordinates. Other than splitting, the integrator makes no
approximations to the Hamiltonian, e.g., it does not assume small angles in the motion. We realized
that, for example, a KQUAD element with a horizontal offset is essentially a combined-function straight-
pole dipole, with the exception of the fact that for a dipole we assign special meaning to certain
incoming and outgoing trajectories.

3



Lindberg [5] has described the coordinate transformations necessary between the angled input tra-
jectory needed for a symmetric dipole and the natural coordinate system of a straight magnet. Such
transformations are used in the BRAT element, for example, which integrates (non-symplectically)
through 3D field maps. Hence, our basic concept is to use the existing straight-element integrator
together with appropriate coordinate transformations at the entrance and exit. Some details must
be considered, such as fringe fields and trajectory errors.

6.2 Fringe fields

Fringe fields provide vertical focusing and are handled using a simple kick approximation at the
ends. The field expansion is

By(z) = B0(z) + xB1(z) +
B2(z)

2
(x2 − y2). (21)

The longitudinal field is related to By by

∂Bz

∂y
=

∂By

∂z
, (22)

giving

Bz ≈ y

(

∂B0(z)

∂z
+ x

∂B1(z)

∂z
+

1

2

∂B2(z)

∂z
(x2 − y2)

)

. (23)

We define a new coordinate system (q, p) rotated at an angle α = θ/2 relative to the (x, z)
system, where θ is the bending angle. The reference particle enters along p with q = 0, with velocity
βc. Bz has a component along the q axis, given by Bq = Bz sinα. The integrated vertical kick from
this component is

∆y′ = − y

H

(

B0(c) + xB1(c) +
1

2
B2(c)(x

2 − y2)

)

sinα, (24)

where z = c is a point well inside the magnet where the fields reach their final values and H is the
rigidity. A more convenient form is

∆y′ = − y

1 + δ

(

1

ρ0
+ xK1 +

1

2
K2(x

2 − y2)

)

sinα, (25)

We see that the explicit magnet gradient (K1) produces a normal-sextupole term in the vertical plane,
with no comparable effect on the horizontal plane. Hence, this is a pseudo-sextupole. Similarly, the
explicit magnet sextupole term (K2) provides an pseudo-octupole term.

6.3 Trajectory issues

Trajectory errors can result in combined-function, straight-pole magnets because, as noted earlier,
the bending radius varies with distance along the reference trajectory. This can be resolved by
making the magnet stronger or weaker overall, or by displacing it in the horizontal plane. In
addition, we want to center the reference trajectory in the magnet, i.e., center it about x = 0, so
that we make best use of the good field region. Hence, we adjust both the field strength and the
horizontal position to simultaneously center the trajectory and obtain the desired deflection angle.
This is done by tracking the reference trajectory from the entrance (plane P0) to the exit plane
(plane P2). A Simplex optimization of the fractional strength error (FSE) and horizontal offset is
performed targeting X(P2) = X(P0) and pX(P2) = −pX(P0), where X and pX are the position
and momentum in the Cartesian coordinate system. We also target X(P0) = −X(P1), where plane
P1 is the longitudinal midplane; this ensures that the central trajectory is centered in the magnet.
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6.4 Symplecticity tests

To test whether it is symplectic, we computed the change in the Hamiltonian for each particle at
the end of each integration step. The Hamiltonian is given by

H = −
√

(1 + δ)2 − q2x − q2y +K0x+
1

2
K1(x

2 − y2) +
1

6
K2(x

3 − 3xy2). (26)

Using a 0.5-m-long bending magnet with an angle of 0.2 rad, we found that the changes in H were
less than 10−15, which demonstrates that the model is symplectic. We also used a combined-function
magnet with quadrupole and sextupole terms, getting the same result.

7 Synchrotron Radiation

Synchrotron radiation is implemented in a less rigorous fashion. In particular, radiation kicks are
imparted after the magnetic field kicks are imparted. Both the classical and quantum nature of the
radiation must be modeled. In elegant’s CSBEND, CCBEND, KQUAD, and KSEXT elements these can be
independently turned on and off. The classical radiation is simple to simulate. Since these elements
are already simulated using numerical integration, we just insert additional kicks for the change
in energy due to classical synchrotron radiation. To do this, we use the fact that the synchrotron
radiation power is[6]

Pγ =
1

6πǫ0

e2c

ρ2
p4 (27)

where we use MKS units, ρ instantaneous bending radius, and p = βγ is the momentum. We can
now find the rate of change of the average of δ = (p− p0)/p0

∂δ

∂s
=

1

6πǫ0

e2

mec2ρ20
(1 + δ)2p30, (28)

where ρ0 is the instantaneous bending radius for an on-momentum particle, i.e., it contains any
strength error (FSE in elegant) and also any variation in field with particle position. Of course,
when integrating this we must take into account the variation in path-length due to x, x′, and y′:

∆s = ∆s0
√

(1 + x/ρd) + x′2 + y′2, (29)

where ρd is the radius of the design orbit.
The quantum effects are trickier to simulate. For CSBEND elements, elegant allows simulating the

actual photon distribution with angle-spread effects. We’ve found this makes very little difference
in practical applications. Hence, for the present, we describe the simpler simulation in which we
simulate the quantum emission using gaussian-distributed random numbers. At each kick location,
a random variation in the energy change is included. Of course, in reality the quanta are not
necessarily emitted at the particular locations we’ve chosen for kicks. For one thing, the number of
quanta emitted in single pass around the APS is about 900. This means that about 11 photons are
emitted in each dipole on each turn. However, if we split a dipole into 20 parts and use a 4th-order
integrator, we are imparting noise to the beam at 60 locations per dipole. If the noise is equivalent in
an rms sense this error should average out over many turns. Comparison with a more fundamental
approach, described above, confirms this expectation.

The growth rate of the mean square deviation of the energy due to quantum excitation is [6]

N〈u2〉 = 55

24
√
3

reh̄mec
4γ7

ρ3
. (30)

We can express this more conveniently as

∂δ2

∂s
=

55

24
√
3

reh̄

mec

p50
ρ30

(1 + δ)4 (31)
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The expected change in δ2 in a section of length ∆s is simply

∆δ2 = ∆s
∂δ2

∂s
, (32)

which we can model by adding gaussian random deviates of magnitude

∆δ =

√

∆s
∂δ2

∂s
. (33)

8 Discussion and Conclusion

We have exhibited expressions showing how elegant performs symplectic integration of hard-edge
dipoles and multipoles. The expressions involve no approximations to the Hamiltonian or equations
of motion, beyond the drift-kick-drift factorization. Hence, they are good for arbitrary momentum
offset and coordinate deviations. This describes the implementation underlying the CSBEND, KQUAD,
KSEXT, KQUSE, KOCT, FMULT, and MULT elements.

We have also described a new method of symplectically integrating through dipoles that are
defined in Cartesian coordinates, implemented as the CCBEND element.

This document is a compilation of several internal technical notes written to document methods
used by the program elegant [7] for sympletic integration of dipoles and multipoles. These technical
notes span the period from 2005 to 2018.
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10 Revision Notes

• December 11, 2021, Revision 1: The original version of this note stated in Section 3 that
q2x + q2y + q2z = (1− δ)2 , which is incorrect. This has been replaced by the correct expression,
q2x + q2y + q2z = (1 + δ)2 .
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