Application of inelastic scattering to study biomembranes: latest results and challenges

Mikhail Zhernenkov

Cell membrane structure

National Synchrotron

BROOKHAVEN

Membrane dynamics

BROOKHAVEN National Synch NATIONAL LABORATORY Light Source II

National Synchrotron

Slow and fast dynamics in cell membranes

National Synchrotron

BROOKHAVEN

IXS study (ESRF) of DLPC at -4°C and 21°C

National Synchrotron

MD of DPPC gel(o) and DMPC liquid (•)

k [Å⁻¹]

IXS study of DMPC at 17°C and 35°C

INS study of DMPC at 17°C and 35°C

M. C. Rheinstadter et al. Phys. Rev. Lett. 93 (2004) 108107

National Synchrotron

BROOKHAVEN

Recent MD studies of biomembranes

National Synchrotron

BROOKHAVEN

Lessons learned from previous studies

- Different parts of lipid molecules contribute to different excitations, which all can, in principle, be probed by inelastic scattering
- Lipid membranes can support long-wave transverse acoustic-like excitations in both liquid and gel phases
- Generalized three effective eigenmode (GTEE) theory is not an appropriate model to fit the inelastic scattering data
- The oversimplified interpretations of collective motions in membranes in terms of simple liquids were incorrect and had lead to misunderstanding of lipid dynamics, which resulted in a field stagnation
- Lack of connection between the observed dynamics and biological functions

Passive transport in lipid membranes

Many factors control the permeation

• solute nature

Office of

Science

DEPARTMENT OF

ENERGY

- molecule type and size
- membrane thickness

Permeability of phospholipid bilayers: Gases, hydrophobic molecules, and small polar uncharged molecules \rightarrow can diffuse through

Larger polar molecules and charged molecules cannot The Cell: A Molecular Approach. 2nd ed. Cooper GM. 2000.

Exact mechanism is unknown

Passive transport mechanisms

- > DPPC main transition temperature: 41 °C
- > DPPC measured at 20 °C and 45 °C; E = 21.78 KeV, Relative humidity ~ 97%

Example of S(Q,0)

 Q_{peak} ~ 14.5 nm⁻¹ for 45 °C corresponds to A_L = 65.4±1 A^2 → fully hydrated DPPC

> National Synchrotron Light Source II

U.S. DEPARTMENT OF Office of Science

BROOKHAVEN National Synchrotron NATIONAL LABORATORY Light Source II

Evidence for transverse excitations

Gel phase, at high $Q \rightarrow$ evident transverse mode

IXS data: dispersion curves

The discovery of the low-Q phononic gap!

Office of

Science

Low-Q phononic gap

National Synchrotron

BROOKHAVEN

Phonon-mediated nm-scale clustering

National Synchrotron

Phonon-mediated nm-scale clustering

Theory of solute diffusion through a membrane:

- ultra-fast "hopping", or "rattling" between thermally-triggered voids.
- \succ partition coefficient strongly depends on the local chain ordering \rightarrow solute exclusion within the region
- > Potential formation of water fingers inside voids \rightarrow proton translocation through membrane J. Am. Chem. Soc. 117, 4118-4129 (1995)

Adv. Drug Deliv. Rev. 58, 1357-1378 (2006) Cold Spring Harb, Perspect, Biol, (2010), 2, a002188

We observe:

- \checkmark nm-scaled short-lived molecular clusters \rightarrow local chain ordering, or density fluctuations
- Increased disorder beyond the cluster size \rightarrow indication of the transient voids formation
- ✓ Size and the life time of the clusters agrees well with the theory prediction

Outlook

IXS machines readily available for users virtually exhausted their capabilities to advance study of biomembranes.

So we need better RESOLUTION!

Outlook: Interesting physics lies at low energies and low Q!

National Synchrotron

Acknowledgements

Dima Bolmatov Sandro Cunsolo Yong Cai

THANK YOU!

