Lattice dynamics and spin-phonon interaction in thin films and nanostructures

Svetoslav Stankov

Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Germany
Acknowledgement

First-principles theory
P. Piekarz and K. Parlinski
Institute of Nuclear Physics,
Polish Academy of Sciences, Krakow, Poland

Nuclear resonance scattering
D.G. Merkel, A.I. Chumakov and R. Rüffer
ID18 of the ESRF, Grenoble, France

Inelastic X-ray scattering
A. Bosak and M. Krisch
ID28 of the ESRF, Grenoble, France

UHV-Analysis Laboratory at ANKA
B. Krause, A. Weißhardt, H.H. Gräfe

This work is financially supported by the Initiative and Networking funds of the
President of the Helmholtz Association and the Karlsruhe Institute of Technology via
the Helmholtz-University Young Investigators Group "Interplay between structure
and dynamics in epitaxial rare-earth nanostructures" contract VH-NG-625.
Outline

- Motivation to study phonons in nanoscale materials
- Methods for probing lattice dynamics at the nanoscale
- Lattice dynamics in thin films and nanostructures:
 - phonon dispersions and phonon density of states
 - spin-orbit coupling, $4f$ electron correlations
 - electron-phonon and spin-phonon coupling
- Conclusions and outlook
Motivation to study phonons in nanoscale materials

The fundamental understanding of the atomic vibrations in low dimensional systems is essential for the elucidation of phenomena such as:

- superconductivity
- thermoelectricity
- propagation of sound and heat

and for designing new devices like:

- thermal logic gates, thermal memory
 \(PRL \ 99, \ 177208 \ (2007); \ PRL \ 101, \ 267203 \ (2008) \)

- phononic waveguides, resonators and switches
 \(PCCP \ 16, \ 23355 \ (2014) \)
Methods for probing lattice dynamics at the nanoscale

- Inelastic scattering of particles

HRHAS:
High Resolution He Atom Scattering

HREELS:
High Resolution Electron Energy Loss Spectroscopy

Methods for probing lattice dynamics at the nanoscale

- Inelastic scattering of light

Surface Brillouin Scattering

Surface Enhanced IR Absorption

Surface Enhanced Raman Scattering

Methods for probing lattice dynamics at the nanoscale

- Inelastic scattering of light

Grazing Incidence Inelastic X-ray Scattering

(In Situ) Nuclear Inelastic Scattering

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of Nd: spin-orbit coupling and 4f electron correlations
 - Represents the light lanthanides
 - More delocalized 4f electrons compared to the heavy lanthanides
 - Important material for building strong permanent magnets
 - Unknown lattice dynamics
Lattice dynamics in thin films and nanostructures

- Lattice dynamics of Nd: spin-orbit coupling and 4f electron correlations

Ab initio calculated lattice dynamics of Nd: VASP + PHONON by P. Piekarz, K. Parlinski (Krakow)

![Graph of lattice dynamics](image)

TABLE I. Lattice constants \((a, c)\), volume per one atom \((V)\), and thermoelastic properties (bulk modulus \(B\), derivative of the bulk modulus \(B'\), elastic constants \(c_{xy}\), and lattice specific heat \(C_V\) at 300 K) of Nd.

<table>
<thead>
<tr>
<th>Property</th>
<th>GGA₀</th>
<th>GGA</th>
<th>GGA+U (SOC)</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (Å)</td>
<td>3.690</td>
<td>3.528</td>
<td>3.669 (3.670)</td>
<td>3.658<sup>a</sup></td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>11.870</td>
<td>11.277</td>
<td>11.804 (11.824)</td>
<td>11.797<sup>a</sup></td>
</tr>
<tr>
<td>(V) (Å³/atom)</td>
<td>34.997</td>
<td>30.389</td>
<td>34.398 (34.470)</td>
<td>34.18<sup>a</sup></td>
</tr>
<tr>
<td>(B) (GPa)</td>
<td>34.7</td>
<td>18.6</td>
<td>31.4 (32.15)</td>
<td>31.8<sup>a</sup></td>
</tr>
<tr>
<td>(B') (GPa)</td>
<td>3.09</td>
<td>2.41</td>
<td>3.05 (3.04)</td>
<td>2.9<sup>b</sup></td>
</tr>
<tr>
<td>(c_{11}) (GPa)</td>
<td>59.9</td>
<td>31.4</td>
<td>55.2</td>
<td>58.78<sup>c</sup></td>
</tr>
<tr>
<td>(c_{33}) (GPa)</td>
<td>72.2</td>
<td>39.1</td>
<td>65.1</td>
<td>65.13<sup>c</sup></td>
</tr>
<tr>
<td>(c_{12}) (GPa)</td>
<td>29.8</td>
<td>14.9</td>
<td>27.9</td>
<td>24.58<sup>c</sup></td>
</tr>
<tr>
<td>(c_{13}) (GPa)</td>
<td>16.5</td>
<td>11.1</td>
<td>14.2</td>
<td>16.20<sup>c</sup></td>
</tr>
<tr>
<td>(c_{44}) (GPa)</td>
<td>18.8</td>
<td>6.3</td>
<td>18.5</td>
<td>16.20<sup>c</sup></td>
</tr>
<tr>
<td>(C_V) (J/mol K)</td>
<td>24.67</td>
<td>24.75</td>
<td>24.69</td>
<td>24.68<sup>d</sup></td>
</tr>
</tbody>
</table>

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of Nd: spin-orbit coupling and 4f electron correlations

IXS experiment at ID28, ESRF (A. Bosak):
- $E = 17.8$ keV
- FWHM = 3 meV

- 4f el. correlations have an impact on the lattice dynamics
- They can be correctly described by the GGA+U formalism
- The spin-orbit coupling has a negligible influence on the lattice parameters

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling
 - Semiconducting ferromagnet & model system for Heisenberg ferromagnets
 - Exceptionally high magnitudes of Faraday and Kerr effects
 - Insulator-to-metal transition
 - Proposed as spin injector for future spintronic devices

Curie temperature \(T_c = 69 \text{ K} \)
Band gap = 1.1 eV
Electronic config: \([\text{Xe}] 4f^7 6s^2\)

\[E_g \]
\[0.3 \text{ eV} \]

A. Schmehl et al., Nat. Mater. 6, 882 (2007)
J. H. Greiner et al., Appl. Phys. Lett. 9, 27 (1966)
Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

100 nm EuO(001) on YSZ(001) using Reactive Molecular Beam Epitaxy

RHEED along EuO(110) X-ray photoelectron spectroscopy

![RHEED image]

- Counts (a.u.)
 - Eu 4f
 - Eu 2+ O 2s
 - Eu 5p

Binding energy (eV)

X-ray diffraction

![X-ray diffraction spectrum]

10 nm of Nb
100 nm of EuO(001)
YSZ(001)

Lattice parameters

- $a_{\text{EuO}} = 5.142 \text{ Å}$
- $a_{\text{YSZ}} = 5.144 \text{ Å}$

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

IXS scans for the LA phonons

- T_C = 69 K

scattering geometry
Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

IXS scans for the TA phonons

![Graph showing phonon energy vs. temperature for different wavevectors](image)

- $T_C = 69$ K

Scattering geometry
Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

\[\Gamma - X \]

\[\Gamma - K - X \]

\[\Gamma - K - \Lambda \]

\[(0,q,q) \]

\[(0,0,q) \]

\[(0,q,0) \]

\[T_C = 69 \text{ K} \]

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

Eu-partial phonon DOS from NIS experiment

FWHM of the peaks in the DOS

FWHM of the TA along Γ-X from the IXS exp.

Lattice dynamics in thin films and nanostructures

- Lattice dynamics of EuO: evidence for giant spin-phonon coupling

\[\Delta \text{FWHM} \approx \hbar \omega \left(\frac{zJ^2}{K} \right) \chi_s''(\hbar \omega) \]

For \(\Delta \text{FWHM} = 8 \text{ meV} \),
spin-phonon coupling constant, \(\alpha \approx 10! \)

\(\omega \): phonon energy; \(J \): exchange energy, \(K \): force constant;
\(z \): coordination number; \(X \): spectral density of spin waves

\[C. \text{Ulrich et al.}, \text{Phys. Rev. Lett. 115, 156403 (2015)} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>(\alpha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuGeO(_3)</td>
<td>5.9</td>
</tr>
<tr>
<td>YBaCuO</td>
<td>10.4</td>
</tr>
<tr>
<td>NaOsO(_3)</td>
<td>(\approx 11.8)</td>
</tr>
</tbody>
</table>

\[R. \text{Werner et al.}, \text{PRB 59, 14356 (1999)} \]

\[J. \text{P. Carbotte et al.}, \text{Nature 401, 354 (1999)} \]

\[S. \text{Calder et al.}, \text{Nat. Commun. 6, (2015)} \]

\[R. \text{Pradip et al.}, \text{Phys. Rev. Lett. 116, 185501 (2016)} \]
Conclusions and outlook

- Reaching a comprehensive understanding of the lattice dynamics modifications by nanostructuring is a challenge.

- New experimental methods are clearly needed for mapping phonon dispersions of nanostructures in particular of ultrathin buried layers (nanoscale interfaces):
 - electron correlations, superconductivity
 - electron-phonon, spin-phonon interactions,
 - thermal conductivity etc.
 → phonon nanoengineering

- The X-ray Echo Spectroscopy has the potential to provide deep insights into the lattice dynamics of nanoscale materials.

Thank you for the attention!