

High-frequency dynamics in liquids and glasses at the mesoscopic scale

Giulio Monaco Università di Trento (I)

outline:

- IXS: science case for amorphous systems
- IXS applications in liquids
- IXS applications in glasses

IXS & disordered systems

- Interplay between structure and dynamics
- Vibrations & relaxations at the picosecond time scale

G. Monaco – High frequency dynamics ... – Chicago, 10/09/2016

Long standing puzzle of the high-frequency dynamics

G. Monaco – High frequency dynamics ... – Chicago, 10/09/2016

University of Trento

1992-2016 – development of IXS @ ESRF

- IXS feasible at large third generation synchrotron radiation sources (ESRF, APS, SPring-8)

- steady development of undulators since the 1990s
- -~10.000 cubes of 0.6x0.6x2.3 mm³
- perfect crystal properties
- collection of sufficient solid angle

University of Trento

3.0

bcc

Short range order in liquids

Es. sodium: the short range order of the liquid evolves with P and T following similar transformations as in the solid phase

Raty et al., Nature 449, 448 (07)

The dynamic structure factor of sodium

Inelastic x-ray scattering data @ ID16, E=23.724 keV, Δ E=1.4 meV

The spectrum of the liquid is a broadened version of that of the (poly)crystal

Giordano & g.m., PNAS 107, 21985 (10)

A simple crystal-like model

model:

G. Monaco – High frequency dynamics ... – Chicago, 10/09/2016

The order fingerprint

First Brillouin zone:

The longitudinal and transverse dispersion curves in the liquid reflect those for the polycrystal: an orientational average over the high symmetry branches of the single crystal

(density scaling of frequencies for the solid)

Giordano & g.m., PNAS 107, 21985 (10)

The disorder fingerprint

≻ Local order → dispersion ≻ Average disorder → broadening

Giordano & g.m., PNAS 107, 21985 (10)

University of Trento

Liquids: reaching the macroscopic limit

At high q (> 1 nm⁻¹) the dynamics is q-dependent

At low q (< 1 nm⁻¹) macroscopic hydrodynamics is recovered

Pontecorvo et al., PRE 71, 011501 (2005)

g.m. et al., PRE 60, 5505 (1999)

University of Trento

The universal anomalies of glasses

University of Trento

Elastic heterogeneities - I

Spatial heterogeneities of the local shear modulus of a model polymer glass

Non affine displacement field (silica)

Yoshimoto et al., PRL 93, 175501 (04)

Leonforte et al., PRL 97, 055501 (06)

University of Trento

Elastic heterogeneities - II

Very limited experimental information on the local elasticity of glasses

Atomic force acoustic microscopy:

Wagner et al., Nat. Mat. 10, 439 (11)

The dynamic structure factor of glycerol

Inelastic x-ray scattering data @ ID16, E=23.724 keV, ∆E=1.4 meV

g.m. & Giordano, PNAS 106, 3659 (09)

University of Trento

Breakdown of the continuum approximation in glasses

Breakdown of the Debye approximation & appearence of a Reyleigh scattering regime on the mesoscopic lengthscale of glasses

g.m. & Giordano, PNAS 106, 3659 (09)

University of Trento

The case of SiO₂ - I

Below the BP frequency:

Negative dispersion of the sound velocity

Damping $\propto v^4$

 $\nu_{c} \sim \nu_{BP} \sim \nu_{IR}$

Baldi et al., PRL 104, 195501 (10)

University of Trento

Elastic heterogeneities - III

Mizuno et al., PNAS 111, 11949 (2014)

University of Trento

The case of SiO₂ - II

University of Trento

The case of SiO₂ - III

G. Monaco – High frequency dynamics ... – Chicago, 10/09/2016

University of Trento

The case of SiO₂ - IV

Chumakov et al., 112, 025502 (2014)

Conclusions

- 1. The X-ray echo scheme promises to offer 10²-10³ times higher signal than at current IXS beamlines. Experiments not feasible at storage rings will be feasible, and those already feasible will be much faster...
- 2. In liquids it will be possible to study the q-dependence of the relaxation dynamics up to a fraction of a ns. This includes, in particular, the structural relaxation time in the critical temperature region for the dynamical arrest.
- 3. In both glasses and liquids, the mesoscopic range will be accessible with a single technique! This can be crucial for metastable systems...

Thank you !