Anharmonic phonons in thermoelectrics and ferroelectrics studied with inelastic neutron and x-ray scattering

Olivier Delaire

Duke University and Oak Ridge Nat. Lab.

https://delaire.pratt.duke.edu/

X-ray Echo Spectroscopy Workshop

Advanced Photon Source

Sep 8-10, 2016

MANAGED BY UT-BATTELLE FOR THE U.S. DEPARTMENT OF ENERGY

Acknowledgements

ORNL: A. May, M. McGuire B. Sales (Sample Synthesis), J. Budai, E. Specht (Scattering and ThermoPhysics Group) Jiao Lin, V. Lynch, D. Singh, X. Chen, CAMM-group (Computing) D. Abernathy, G. Ehlers, M. Stone, T. Hong, S. Chi, H. Cao (Neutron scattering)

ANL/APS: A. Said, A. Alatas, M. Hu, W. Bi

MIT: Gang Chen, Yang Shao-Horn Linköping U.: Olle Hellman

Funding:

- DOE Office of Science Early Career Award, DOE BES-MSED
- DOE Energy Frontier Research Center (S³TEC)
- Center for Accelerating Materials Modeling from SNS data (CAMM)

Neutron and X-ray Spectrometers

Neutron time-of-flight:

Inelastic X-ray Spectrometer:

ARCS at SNS: ~10⁵ pixels, ~10⁴ time channels each. beam ~ 5cm, $\Delta E/E \sim 5\%$

HERIX at APS: ~10 detectors. beam ~30 μ m ; Ei = 23.7 keV Resolution ~1.5 meV, constant with E

S(Q,E) mapping with INS

- With recent advances in timeof-flight chopper spectrometers, we can efficiently collect the entire 4-D (Q_x, Q_y, Q_z, E) space
- ARCS, CNCS, HYSPEC, SEQUOIA at SNS can provide these 4-D S(Q,E) maps

But requires large single crystals! > several grams

Niobium single crystal ARCS, $E_i = 50$ meV, mass~10g T = 300K

Phonon Transport in Thermoelectrics

- O. Delaire, J. Ma et al., Nature Materials 10, 614 (2011)
- J. Ma*, O. Delaire*, et al., Nature Nanotechnology 8, 445 (2013)
- C. Li, O. Hellman, O. Delaire et al., Phys. Rev. Letters 112, 175501 (2014)
- C. Li, J. Ma, O. Delaire et al. Phys. Rev. B 90, 214303 (2014)
- Li*, Hong*, May, Bansal, Ma, Hong, Chi, Ehlers, and Delaire, *Nature Physics* 11, 1063 (2015)
- Bansal, Hong, Li, May, and Delaire *Phys. Rev. B* 94, 054307 (2016)

Solar thermoelectrics

Thermal conductivity in thermoelectrics

• Suppress lattice thermal conductivity κ_{lat} to optimize thermoelectric efficiency:

$$zT = \frac{(\sigma S^2 T)}{(\kappa_{el} + \kappa_{lat})}$$

S: Seebeck ; $\sigma:$ el. conductivity

κ: thermal conductivity

• Rationalize *microscopic origins* of κ_{lat} to gain control over phonon transport:

All quantities can be obtained from neutron/x-ray scattering measurements and also computed from first-principles (for moderately complex cells).

Phonons and Thermal Transport

- Perfect harmonic crystal would have infinite thermal conductivity...
- Phonons in real materials have finite lifetimes and mean-free-paths
- Phonon-phonon scattering from anharmonicity
- Other phonon scattering mechanisms: electron-phonon, spin-phonon, defects, nanostructure, mesoscale.

Biswas et al. Nature 489, 414 (2012)

Thermal conductivity and INS measurements of phonon linewidths

INS / IXS measures dynamical structure factor, S(Q,E) providing details of dispersions and linewidths:

$$\kappa = \sum_{q,j} \kappa_{q,j} = \frac{1}{3} \sum_{q,j} C_{q,j} v_{q,j}^2 \tau_{q,j}$$

8

First-principles modeling of S(Q,E)

Example: S(Q,E) in FeSi single-crystal

Measured intensities reflect phonon polarization vectors:

PNAS 2011, PRB 2013, PRB 2015

B20

Fe

 Q_x

Thermal diffuse scattering DFT modeling

APS: VO₂ T-dependent

Experiment R-phase (a)

Theory

PbTe, SSRL with D. Reis' group, Stanford/SLAC

 Q_x

Budai^{*}, Hong^{*}, Manley, Specht, Li, Tischler, Abernathy, Said, Leu, Boatner, McQueeney, and Delaire, "Metallization of vanadium dioxide driven by large phonon entropy." Nature 515, 535 (2014)

S(Q,E) Modeling: Comparison Between Experiment and Simulations: niobium

Bao, Archibald, Bansal, Delaire J. Comp. Physics, 315 (2016)

CAMM

(our Simphonies software is available from GitHub)

CAMM supports concurrent inelastic neutron scattering measurements and first-principles modeling of anharmonic phonons

O. Delaire, J. Hong, H. Cao, A. Savici, B. Winn, L. Boatner, G. Shipman, manuscript in preparation

MANTÍD

http://camm.ornl.gov

- Study of ferroelectric instabilities in SrTiO₃
- Measurements on HYSPEC using live data streaming (top)
- Dedicated access to Cray XC30 EOS cluster at Oak Ridge Leadership Computing Facility (11,000 cores)
- Full scale ab-initio molecular dynamics simulations on experiment timescale allowing real time decisions

Effort supported by Center for Accelerating Materials Modeling.

PbTe: strong phonon anharmonicity near ferroelectric instability

Delaire, Ma et al., Nature Materials 10, 614 (2011)

- Li, Hellman, Delaire et al., Phys. Rev. Lett. 112, 175501 (2014)
- Li, Ma, Delaire et al. Phys. Rev. B 90, 214303 (2014)

Anharmonicity in rocksalt PbTe

- Large figure-of-merit ZT_{max}~ 2 (Pei Nature 2011, Biswas Nature 2012)
- Low thermal conductivity $\kappa_{lat}=2 \text{ W/m/K}$ at 300K
- Strongly anharmonic transverse-optic (TO) mode ("soft mode").
- 5x suppression in κ_{lat} from optic-acoustic scattering (Shiga PRB 2012, Tian PRB 2012)

Pb Te

CNCS @ SNS (12meV)

Time-resolved thermal diffuse scattering: LCLS measurements on PbTe

Photoinduced suppression of the ferroelectric instability in PbTe Jiang *et al.* Nature Commun. 2016 (collaboration with D. Reis)

No evidence for off-centering/dipoles in diffuse scattering

>>> Does not support conclusions of Bozin, Billinge *et al.*, "Entropically Stabilized Local Dipole Formation in Lead Chalcogenides", Science (2010)

Diffuse scattering entirely from phonons (THz timescale)

Figure 1 | Femtosecond x-ray diffuse scattering from PbTe. a, Reference scattering from PbTe prior to photoexcita-

PbTe single-crystal time-resolved pump-probe TDS on LCLS / XPP

T-dependence of TO phonon in PbTe

Deviates strongly from quasiharmonic behavior:

- Broad TO (ferroelectric) mode at Γ, stiffens with increasing T.
- Double-peak structure, with strong T-dependence.

HB3 @ HFIR (thermal 3-axis)

Delaire, Ma *et al.*, Nature Materials **10**, 614 (2011) Confirmed by Jensen *et al.* PRB **86**, 085313 (2012)

Anharmonic phonon spectral functions

- Ab-initio MD + TDEP reproduces strong anharmonic effects
- χ"(Q,E) computed from anharmonic phonon self-energy Σ_q(E)
- Reproduce TO phonon splitting in PbTe, by including anharmonicity

Phys. Rev. Letters 112, 175501 (2014) Phys. Rev. B 90, 214303 (2014)

Neutron spectra as probes of many-body effects (R. Cowley Rep. Prog. Phys. 1968)

• Dynamical susceptibility:

$$\chi_{\mathbf{q}j}''(\Omega) = |F(\mathbf{Q}, \Omega)|^2 \times \frac{2\omega_{\mathbf{q}j}\Gamma_{\mathbf{q}j}(\Omega)}{\{\Omega^2 - \omega_{\mathbf{q}j}^2 - 2\omega_{\mathbf{q}j}\Delta_{\mathbf{q}j}(\Omega)\}^2 + 4\omega_{\mathbf{q}j}^2\Gamma_{\mathbf{q}j}(\Omega)^2}$$

- Look for minima in {...}
- Multiple crossings lead to multiple peaks in the INS spectra for χ_q "(E)
- $\Delta_{q,j}(\Omega)$ obtained from anharmonic interatomic force-constants.

Phonon "nesting" increases phase-space for acoustic-optic scattering of TO mode

Imaginary part of self-energy (damping):

$$\Gamma_{\mathbf{q}j}(\Omega) = \frac{18}{\hbar^2} \sum_{\mathbf{q}_1 \mathbf{q}_2 j_1 j_2} \left| V_3 \begin{pmatrix} \mathbf{q} \, \mathbf{q}_1 \, \mathbf{q}_2 \\ j \, j_1 \, j_2 \end{pmatrix} \right|^2 \times \left(\mathbf{t} \mathbf{q} \\ \left((n_1 + n_2 + 1) \left[\delta_{\omega_1 + \omega_2 - \Omega} - \delta_{\omega_1 + \omega_2 + \Omega} \right] \right) \\ + (n_2 - n_1) \left[\delta_{\omega_1 - \omega_2 - \Omega} - \delta_{\omega_1 - \omega_2 + \Omega} \right] \right),$$

3-phonon interaction strength (transition probability)

Kinematic constraints for conserving energy and momentum (phase space size ~ joint DOS)

Real and imaginary parts of self-energy related by Kramers-Kronig (Hilbert) transformation:

Phonon "nesting" increases phase-space for acoustic-optic scattering of TO mode

- Phase-space size amplifies effect of anharmonic potential
- Nesting of phonon dispersions:

→ screen/engineer materials for favorable dispersions

SnSe: bonding instability, phase transition and anharmonicity

Li*, Hong*, May, Bansal, Ma, Hong, Chi, Ehlers, and Delaire, *Nature Physics* 11, 1063 (2015)

Bansal, Hong, Li, May, and Delaire *Phys. Rev. B* 94, 054307 (2016)

Hong and Delaire, arxiv:1604.07077

SnSe: anisotropy and phase transition

- Very high zT ~ 2.5 and very low thermal conductivity $\kappa_{lat} < 1 \text{ Wm}^{-1}\text{K}^{-1}$
- Strongly anisotropic,
- Structural phase transition at ~805K

Sn

Zhao *et al.* Nature (2014), Zhao *et al.* Science (2016), Chen *et al.* J. Mater. Chem. 2014, Carrete *et al.* APL (2014)

Neutron scattering

First-principles simulations

Important to preserve information about the polarization vectors

SnSe: S(Q,E) for *c*-polarized modes

- Measured phonons with neutron scattering on single-crystals at 100K < T < 850K
- Mapped all crystallographic directions (orthorombic a≠b≠c)
- Observe strong softening with increasing temperature (up to Pnma – Cmcm phase transition)
- Especially anharmonic modes with polarizations along *c*-axis.
- Good agreement with DFT / LDA but GGA underestimates phonon frequencies.

Li*, Hong*, May, Bansal, Ma, Hong, Chi, Ehlers, and Delaire, Nature Physics 11, 1063 (2015)

SnSe soft-mode behavior of $\mathbf{TO}_{\mathbf{c}}(\Gamma)$

- Many acoustic and optical phonons show strong temperature dependence.
- Lowest zone-center TO_{c} mode softens at the phase transition.
- Confirms strong anharmonicity.

Li*, Hong*, May, Bansal, Ma, Hong, Chi, Ehlers, and Delaire, Nature Physics 11, 1063 (2015)

SnSe zone-center TO_c

Anharmonicity and thermal transport

Cutoff radius for Ψ_3

*W. Li Comput. Phys. Commun. 185, 17471758 (2014)

Delaire, Nature Physics 11, 1063 (2015)

Anharmonicity from bonding instability

Electron Localization Function

- Electronic instability (Jahn-Teller) of high-T Cmcm phase: Resonantly-bonded high-symmetry Cmcm phase distorts to Pnma to lower electronic energy.
- Results in double-well anharmonic potential for ions.
- We have identified several strongly anharmonic materials near Jahn-Teller / Peierls instabilities.

Hong and Delaire, arxiv:1604.07077

Phonon amplitude

High-T Cmcm

AgSbTe₂ : importance of nanostructure

J. Ma*, O. Delaire*, *et al.*, *Nature Nanotechnology* 8, 445 (2013) Ma, Delaire *et al. Phys. Rev. B* 90, 134303 (2014)

AgSbTe₂ *vs* **PbTe:** the importance of nanostructure

Why are the thermal conductivities of PbTe and AgSbTe₂ so different?

"loffe-Regel limit" = *minimum* lattice thermal conductivity

(mean-free-paths of phonons cannot be smaller than interatomic distance)

Morelli et al. PRL 2008

Ma*, Delaire* et al. Nature Nanotechnology 2013

AgSbTe₂: glass-like κ_{lat} , but not minimum

• Estimate thermal conductivity from INS data:

Transport: $\kappa_{lat} = 0.7 \text{ Wm}^{-1}\text{K}^{-1}$ at 300K

From INS: $\kappa_{lat} = 0.8 \pm 0.15$ Wm⁻¹K⁻¹ at 300K

• INS shows broad linewidths (but not fully damped), independent of temperature: <u>structural scattering</u>

→ INS provides microscopic view on thermal transport.

Ma*, Delaire* et al. Nature Nanotechnology 2013

AgSbTe₂ phonon dispersions and lifetimes

Mapped dispersions in AgSbTe₂ (INS):

dispersions similar to PbTe (scaled by $M^{\frac{1}{2}}$).

Scattering rates are much larger in AgSbTe₂ than in PbTe.

Diffraction reveals nano-scale ordering

- Short-range ordering of Ag/Sb seen with neutrons, x-rays, and TEM, agreement with DFT prediction (Barabash PRL 2008).
- Superlattice half-integer peaks (cation ordering), rods along <111>, and lobes.
- Ordering correlation length ξ~3nm. Nanoscale ordering twins distort lattice.

TEM diffraction: diffuse + superlattice (1,-1,0) reciprocal plane

Neutron elastic scattering: diffuse + superlattice (1,-1,0) reciprocal plane

Ma, Delaire et al. PRB 2014

Ma, Delaire et al. Nature Nano 2013

Temperature dependence of linewidths

- Phonon linewidths (scattering rates) **constant** with temperature ≠ anharmonic.
- Measured widths much larger than umklapp or point-defect contributions.

Electron-phonon coupling in Mo₃Sb_{7-x}Te_x

From: Candolfi et al. Phys. Rev. B 79, 235108 2009

20 atoms in conventional cubic cell

Structural transition (cubic>tetra) below 53K

Electron-phonon coupling and thermal transport in the thermoelectric compound $Mo_3Sb_{7-x}Te_x$

Dipanshu Bansal,^{1,*} Chen W. Li,¹ Ayman H. Said,² Douglas L. Abernathy,³ Jiaqiang Yan,^{1,4} and Olivier Delaire^{1,†}

Te-alloying in $Mo_3Sb_{7-x}Te_x$ shows stiffening of phonon dispersions and DOS.

Studied with combination of IXS on small crystals (for dispersions) and INS on powders (for DOS).

Te-alloying fills valence band and decreases electronic density, suppressing electronphonon coupling.

2mm crystal in reflection geometry

Measured on HERI

Energy (meV)

Mo3 Sb5.5 Te1.5 300

03Sb7 300K

Comparison with DFT dispersions

First-principles (DFT) simulations achieve good agreement with IXS

But need experimental data on linewidths to push theory:

combined anharmonicity, electron-phonon, disorder, spin-phonon scattering

Challenges ahead:

- Necessary to analyze many mode linewidths to validate theory: need automatization of resolution corrections
- Need better E-resolution ~10-50µeV for longer phonon lifetimes, in materials with larger thermal conductivities >10 W/(m.K)
- Monte-Carlo modeling of Q-E resolution and multiple scattering effects with scattering kernels including phonon relaxation (with Jiao Lin).

Conclusions

- Combined IXS / INS experiments and DFT simulations provide powerful insights.
- Opportunities to investigate phonon scattering mechanisms and push theoretical modeling.
- Strong anharmonicity near lattice instabilities in chalcogenide thermoelectrics (displacive transitions with soft-modes), electron-phonon coupling, spin-phonon coupling.
- High-resolution and high-intensity IXS are timely and needed.

Thank You