Workshop: X-Ray Echo Spectroscopy – Opportunities and Feasibility September 8-10, 2016, APS, Argonne National Laboratory.

The Ultrahigh Resolution IXS Beamline at NSLS-II: Current Status and Performance

Yong Cai,

NSLS-II, Brookhaven National Laboratory

Outline

- A Brief Overview
- Advances in Crystal Optics & Beamline Development
- Performance, Recent Results & Early Experience
- Outlook

The Ultrahigh Resolution IXS Beamline at NSLS-II

- Designed to Achieve Best-in-Class Performance for vibrational dynamics by IXS :
 - Angular dispersive crystal optics for cutting-edge resolution $(0.1 \sim 1 \text{ meV})$ with sharper tails in resolution function and high Q resolution (0.1 nm⁻¹).
 - Medium operation energy (9.1 keV) capitalizing on NSLS-II's strengths in flux and brightness
- Scientific Applications
 - Mesoscopic dynamics in liquids, soft matter, and biological systems
 - Phonons in single crystals, surfaces, interfaces and systems under extreme conditions

Collimated polychromatic incident beam

PORTUNITIES FOR

Science at the Mesoscales

- Addressing scientific challenges at the mesoscopic length scale (5 ~ 50 nm, part of "no-man's land")
 - Phononics in functional nanoparticle assemblies optimizing transport and response properties by design and control of mesoscale structure
 - Fast dynamics of bio-molecular systems and their biological functions bio-inspired mesoscale inorganic materials.
 - Intermediate regime in disordered systems.
- Recent examples: Tomorrow's talks
 - Giulio Monaco:

"High-frequency dynamics in liquids and glasses at the mesoscopic scale"

• Alessandro Cunsolo:

"High resolution inelastic x-ray measurements on soft matter systems: current results and future perspectives"

• Mikhail Zhernenkov:

"Application of inelastic scattering to study biomembranes: latest results and challenges"

National Synchrotron

NATIONAL LABORATORY | Light Source ||

DOE-BES Report

Our Approach: Angular Dispersive Optics

- Inline 4B mono for ease and range in energy scanning
- Analyzer optics based on CDW scheme proposed by Shvyd'ko (2004, PRL 2006)

- → Angular acceptance ~100 µrad
- → High peak reflectivity ~38%
- → Sharp tails (multiple reflections sub-meV and anomalous transmission)
- → Sub-meV resolution at ~10 keV
- Major technical challenges
 - → Lattice homogeneity: $\Delta d/d = \Delta E/E \sim 10^{-8}$
 - → Mirror-like strain-free surface quality (SE: < 10 µrad)
 - → Precision and stable motion control
- Collimating optics (50-100:1) for large (5-10 mrad) acceptance
 - \rightarrow Long dispersive crystal!!!

National Synchrotron

FIONAL LABORATORY | Light Source II

High-Resolution Optics for IXS

- Demonstrated the initial goal of sub 1 meV resolution:
 - CDW analyzer (de-convoluted) resolution:
 ΔE = 0.7 meV,
 - CDW analyzer efficiency ~ 20% (theory: ~ 38 %)
 - 4B mono and CDW analyzer combined resolution $\Delta E = 0.8 \text{ meV}$,
 - 4B-HRM efficiency ~ 30% (theory: ~ 35%)
 - Sharp Gaussian-like tails
- Montel collimating mirror performance verified.
 - Angular acceptance : > 10 mrad
 - Volume acceptance:
 ~ 20 μm, divergence
 < 100 μrad;
 - Efficiency measured:
 ~ 47% (theory: 49%)

(Cai et al, J. Phys.: Conf. Ser. 2013) (Suvorov et al, JSR, 2014)

National Synchrotron

NATIONAL LABORATORY Light Source II

IXS Optics Layout & Beamline Design

Insertion device: IVU22-3m, optimized for 9.1 keV (max flux: 8x10¹⁴ phs/sec/0.1%bw@500mA).

to LEN

56.91

RB FOCUSING MILTORS

t8 HEN

58.0M

Samole

High Resolution

55.8M

Source

ADETUTE

Be-CRLs for ~1:1 focusing at SSA to reduce source size broadening

Ollimating Mirror

CDW ANAWARE

abed Multilayer

- HRM: inline 4B designed for 0.7 meV
- KB Mirrors: bendable plane ellipse
- Montel mirror + CDW analyzer designed for 0.7 meV

Monochromatic Beam (Power < 0.5W) White Beam

30.0m

ADERTIFE & ADSOLDER

10 BR CRI

Double CTX5tal

Monochromator

MLIC

Shield Wall

36.11

Undulator

18.JM

IXS Commissioning Timeline & Milestones

- Nov 24, 2014: First light Beam delivered to white beam stop in FOE
- **Feb 7, 2015**: Beam delivered to Hutch D; all slits, SSA and BPMs commissioned.
- March 22, 2015: KB Mirrors aligned. Beam focus measured optimized.
- April 25, 2015: HRM aligned, initial performance characterized.
- May 2015 shutdown: Be-CRL assembly installed.
- June 2015: Entire beamline optics system aligned, initial performance characterized.
- July 1, 2015: Beamline operation at 150 mA begins
- Oct 4, 2015: DCM Beam Stability Feedback Control Established.
- Oct 30, 2015: Montel mirror & CDW analyzer optics aligned.
- Feb 10, 2016: Tagma detector installed.
- **Feb 11, 2016**: First User Experiment (HP H2 Dave Mao).
- Apr 14, 2016: Beamline operation at 250 mA begins
- July 12, 2016: Beamline begins general user operation

Monochromatic Beam (Power < 0.5W) White Beam

Be-CRL Assembly Performance

- Very first component in the front end
- Integrated fixed mask; dual mode (inline & bypass) operation
- Lens assembly with integrated graphite filters

ENERGY Office of Science

National Synchrotron

NATIONAL LABORATORY | Light Source ||

Double Crystal Monochromator Performance

- Bruker DCM with LN2 cooled Si(111) or Si(220)
- Gravity-fed water jacket to maintain temperature stability
- Fixed exit or pseudo channel-cut mode
- Energy (lattice constant) calibrated for energy scan

CAENels BEST system for monitoring and feedback control

Office of

Science

National Synchrotron

NATIONAL LABORATORY Light Source II

High Resolution Mono Performance

- Mechanical design based on in-house developed trapezoid flexure with 10 nrad angular resolution
- Energy resolution results
 - Measured energy resolution: $\Delta E \sim 1 \text{ meV}$
 - Characterized using the same CDW setup in R&D with a known $\Delta E \simeq 0.65$ meV
 - Sharp tails down to 2 orders of magnitude

Office of

Science

X-ray

KB Mirror Performance

- VFM: 1200 (L) x 55 (W) x 47 (H) mm³, slope error 0.29 μrad
- HFM: 900 (L) x 50 (W) x 37 (H) mm³, slope error 0.71 μrad.
- Measured focal size at sample compare well with designed value of 5 (V) x 7 (H) μ m²

Without CRL's: FWHM = 5.9 (V) x 7.8 (H) μ m² With CRL's, beam focus slightly broadened to ~10 x 10 um²

IXS Spectrometer System

Montel mirror to provide comparable angular acceptance to spherical diced analyzers @ full illumination: $\geq 10x10 \text{ mrad}^2$

National Synchrotron

CDW Analyzer

6 D crystals, each 200mm long with full position control based on trapezoid flexure, make up a total length of 1.2 m to match the angular acceptance of the Montel mirror.

Multiple Beam Diffraction Effect

Stetsko et al, PRL (2011)

Ewald

National Synchrotron

NATIONAL LABORATORY Light Source II

(404)

D Crystal Orientation and De-tuning

- MBD provides the most convenient diagnostic for D crystal alignment.
- Azimuthal de-tuning removes MBD and recovers ~20% of intensity.

Azimuthal De-tuning and Tagma Detector

D crystal azimuthal de-tuning allows separation of individual D reflections.

(Keister, et al, J. Phys.: Conf Ser. 2014)

Resolution Function

Resolution Function

 Resolution functions compared to ESRF show significantly sharper tails of the new spectrometer.

Slides on Science Commissioning Experiments were removed

Analyzer Optics: Montel Mirror

- Design (to achieve comparable acceptance to spherical diced analyzers)
 - Angular acceptance @ full illumination: \geq 10x10 mrad²
 - Collimation: $\leq 0.1 \times 0.1$ mrad²
- Acceptance volume in forward scattering: ~20µm (X) x 20µm (Y) x 2mm (Z)
- Vertical divergence of collimating beam: No effect on energy resolution
- Horizontal divergence of collimating beam contributes to energy resolution

Light Source II

Performance Comparisons (current & outlook)

Facility (Beamline)	ΔΕ / Ε (meV) / (keV)	∆Q** (nm⁻¹)	Flux@sample (photons/sec)	Beam Size (V×Η μm²)	F.Density@sample (photons/sec/µm²)	Analyzer Setup array/MaxSA[mrad ²]	Sharp Res. Tails
ESRF (ID28)	1.5 / 21.7	0.5	3.6×10 ⁹	13×6	4.6×10 ⁷	9x1 array / [Φ14] ea.	
APS (30-ID-C)	1.5 / 23.7	0.6	5×10 ⁹	20×35	7.1×10 ⁶	9x1 array / [Φ11] ea.	
SPring-8 (43LXU)	1.3 / 21.7	0.5	2.0×10 ¹⁰	50×12	3.3×10 ⁷	11x4 – 2 array / [9.4 x 8.9] ea.	
NSLS-II (IXS)	1.7 / 9.1	0.2	4×10 ⁹ *	5×7	3.4×10 ⁷	Single / [15 x 15]	yes

*projected flux @ 500mA, 1.2x10⁹ measured @ 150mA; ** Q resolution @ 5 mrad angular acceptance.

- Undulator upgrade can achieve a potential flux gain by more than 5 times (using cAGU-7x1m), providing a total flux @ 9.1 keV of > 2x10¹⁰ photons/sec/meV. Comparable to SPring-8 43LXU
- Factor of ~2 improvement with better crystals
 - Montel mirror measured reflectivity: 42%
 - Current CDW analyzer efficiency: ~20%
- More Analyzers

BRUUKHAVEN

NATIONAL LABORATORY | Light Source II

National Synchrotron

Thank You for your attention!

BAT MOU, Dec 8, 2008

EFAC members (2007)

BROOKHAVEN National Synchrotron NATIONAL LABORATORY Light Source II

