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• A Brief Overview

• Advances in Crystal Optics & Beamline Development

• Performance, Recent Results & Early Experience

• Outlook

Outline
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The Ultrahigh Resolution IXS Beamline at NSLS-II

 Scientific Applications
• Mesoscopic dynamics in liquids, soft matter, and biological systems

• Phonons in single crystals, surfaces, interfaces and systems under 
extreme conditions

Ultimate Goal: 
World-leading 0.1 meV energy resolution for studying dynamics 

 Designed to Achieve Best-in-Class Performance for vibrational dynamics by IXS : 
• Angular dispersive crystal optics for cutting-edge resolution (0.1 ~ 1 meV) with sharper tails in 

resolution function and high Q resolution (0.1 nm-1).

• Medium operation energy (9.1 keV) capitalizing on NSLS-II’s strengths in flux and brightness

ILS

(Brillouin) 

(Raman)

IUVS 

(Elettra)

INS

NSLS-II
IXS @ 1meV

IXS @ 0.1 meV

“Filling in the Gap”
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Science at the Mesoscales

 Addressing scientific challenges at the mesoscopic length 
scale (5 ~ 50 nm, part of “no-man’s land”)

• Phononics in functional nanoparticle assemblies - optimizing 
transport and response properties by design and control of 
mesoscale structure

• Fast dynamics of bio-molecular systems and their biological 
functions - bio-inspired mesoscale inorganic materials.

• Intermediate regime in disordered systems. 

DOE-BES  Report

 Recent examples: Tomorrow’s talks

• Giulio Monaco: 
“High-frequency dynamics in liquids and 
glasses at the mesoscopic scale”

• Alessandro Cunsolo: 
“High resolution inelastic x-ray measurements 
on soft matter systems: current results and 
future perspectives”

• Mikhail Zhernenkov: 
“Application of inelastic scattering to study 
biomembranes: latest results and challenges”
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Our Approach: Angular Dispersive Optics

 Inline 4B mono for ease and range in energy scanning
 Analyzer optics based on CDW scheme proposed by Shvyd’ko (2004, PRL 2006)

CDW - Analyzer
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 Angular acceptance ~100 µrad

 High peak reflectivity ~38%

 Sharp tails (multiple reflections 
and anomalous transmission)

 Sub-meV resolution at ~10 keV

Detector

 Major technical challenges

 Collimating optics (50-100:1) for large 
(5-10 mrad) acceptance
 Long dispersive crystal!!!

 Lattice homogeneity: d/d = ΔE/E ~ 10-8

 Mirror-like strain-free surface quality 
(SE: < 10 µrad)

 Precision and stable motion control 

4B - Mono
Huang, JSR (2011)
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High-Resolution Optics for IXS

 Demonstrated the initial goal of sub 1 meV resolution: 
• CDW analyzer (de-convoluted) resolution:

ΔE = 0.7 meV,

• CDW analyzer efficiency ~ 20% (theory: ~ 38 %)

• 4B mono and CDW analyzer combined 
resolution ΔE = 0.8 meV, 

• 4B-HRM efficiency ~ 30% (theory: ~ 35%) 

• Sharp Gaussian-like tails

 Montel collimating mirror performance verified.
Detector
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 Simulated 4B resolution
 CDW-CDW D crystal scan

 Lorentz Curve of 0.87 meV

CDW analyzer4B Mono

• Angular acceptance : 
> 10 mrad

• Volume acceptance: 
~ 20 µm, divergence 
< 100 µrad;

• Efficiency measured:
~ 47% (theory: 49%)

(Cai et al, J. Phys.: Conf. Ser. 2013) 

(Suvorov et al, JSR, 2014) 
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IXS Optics Layout & Beamline Design

Hutch A 

(FOE)

Hutch B 

(High-Resolution Optics)

Hutch C 

(Optics Development)

Hutch D 

(IXS Endstation)

ID-10

Control/User

Area

White BeamMonochromatic Beam (Power < 0.5W)

 Insertion device: IVU22-3m, optimized for 9.1 keV (max flux: 8x1014 phs/sec/0.1%bw@500mA).

 Be-CRLs for ~1:1 focusing at SSA to reduce source size broadening

 HRM: inline 4B designed for 0.7 meV

 KB Mirrors: bendable plane ellipse 

 Montel mirror + CDW analyzer

designed for 0.7 meV
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IXS Commissioning Timeline & Milestones

Hutch A 

(FOE)

Hutch B 

(High-Resolution Optics)

Hutch C 

(Optics Development)

Hutch D 

(IXS Endstation)

ID-10

Control/User

Area

White BeamMonochromatic Beam (Power < 0.5W)

 Nov 24, 2014: First light – Beam delivered to white beam stop in FOE
 Feb 7, 2015: Beam delivered to Hutch D; all slits, SSA and BPMs commissioned.
 March 22, 2015: KB Mirrors aligned. Beam focus measured optimized.
 April 25, 2015: HRM aligned, initial performance characterized.
 May 2015 shutdown: Be-CRL assembly installed. 
 June 2015: Entire beamline optics system aligned, initial performance characterized. 
 July 1, 2015: Beamline operation at 150 mA begins
 Oct 4, 2015: DCM Beam Stability Feedback Control Established.
 Oct 30, 2015: Montel mirror & CDW analyzer optics aligned.
 Feb 10, 2016: Tagma detector installed.
 Feb 11, 2016: First User Experiment (HP H2 – Dave Mao).
 Apr 14, 2016: Beamline operation at 250 mA begins
 July 12, 2016: Beamline begins general user operation

Nov 24, 2014: First Light
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Be-CRL Assembly Performance

• Very first component in the front end
• Integrated fixed mask; dual mode (inline & bypass) operation
• Lens assembly with integrated graphite filters

Aperture 

Pre-mask

Graphite filters

Lens stack

Bypass Inline

No CRL’s

With CRL’s

RC: 150mA …. …. 225 mA
@ BPM1

Vertical beam size @ SSA

No CRL’s
FWHM = 748 µm 

With CRL’s
FWHM = 33 µm 

Transmission: 
78% @ 9.1 keV

Flux density gain:
17.7 times
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Double Crystal Monochromator Performance
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 Bruker DCM with LN2 cooled Si(111) or Si(220)
 Gravity-fed water jacket to maintain temperature stability
 Fixed exit or pseudo channel-cut mode
 Energy (lattice constant) calibrated for energy scan

 CAENels BEST system for monitoring and feedback control

BPM1

DCM

1.3 eV
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High Resolution Mono Performance
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FWHM = 0.35 rad

E = 1.16 meV

E
decon

 = 0.98 meV

 Mechanical design based on in-house 
developed trapezoid flexure with 10 nrad
angular resolution

 Energy resolution results
 Measured energy resolution: ΔE ~ 1 meV
 Characterized using the same CDW setup in 

R&D with a known ΔE ~ 0.65 meV

 Sharp tails down to 2 orders of magnitude

X-ray

With Be-CRL’s

4B - HRM
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KB Mirror Performance

 VFM: 1200 (L) x 55 (W) x 47 (H) mm3, slope error 0.29 µrad
 HFM: 900 (L) x 50 (W) x 37 (H) mm3, slope error 0.71 µrad.
 Measured focal size at sample compare well with designed value of 5 (V) x 7 (H) µm2

Without CRL’s: FWHM = 5.9 (V) x 7.8 (H) µm2

With CRL’s, beam focus slightly broadened to ~10 x 10 um2
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IXS Spectrometer System

 Montel mirror to provide comparable angular acceptance to spherical diced analyzers 
@ full illumination: ≥ 10x10 mrad2
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 6 D crystals, each 200mm long with full position control based on trapezoid 

flexure, make up a total length of 1.2 m to match the angular acceptance of the 

Montel mirror.

CDW Analyzer

C

350 ~ 450 µm

6 D’ss
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Multiple Beam Diffraction Effect
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Stetsko et al, PRL (2011)

 MBD in CDW/CDDW causes 10-30% loss of spectral 
efficiency, but can be removed by introducing Φ angle 
offset with the 45º rotation azimuth geometry

Normal Azimuth 

Geometry

45º Rotation
Azimuth Geometry
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 MBD provides the most convenient diagnostic for D crystal alignment. 

 Azimuthal de-tuning removes MBD and recovers ~20% of intensity.

D Crystal Orientation and De-tuning

[001]

[010] [100]

[008]
[044] [404]

Photodiodes
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 D crystal azimuthal de-tuning allows separation of individual D reflections.

Azimuthal De-tuning and Tagma Detector

D1
D3
D5

D2
D4
D6

2 x 3 = 6 mm
Sensor Board

(Keister, et al, J. Phys.: Conf Ser. 2014)

Before de-tuning

After de-tuning
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Resolution Function

ΔE = 1.36 meV
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Resolution Function
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 Resolution functions compared to ESRF show significantly sharper tails of the 
new spectrometer. 
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Slides on Science Commissioning Experiments

were removed
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Analyzer Optics: Montel Mirror

 Design (to achieve comparable acceptance to spherical diced analyzers)
o Angular acceptance @ full illumination: ≥ 10x10 mrad2

o Collimation: ≤ 0.1x0.1 mrad2

 Acceptance volume in forward scattering: ~20µm (X) x 20µm (Y) x 2mm (Z)

 Vertical divergence of collimating beam: No effect on energy resolution

 Horizontal divergence of collimating beam contributes to energy resolution

: Φ ≤ 0.15 mrad for 0.1 meV; ≤ 0.5 mrad for 1 meV 

- Projection of the scatter volume is 
expected to lead to faster drop of 
scattered intensity than the polarization 
factor.
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Performance Comparisons (current & outlook)

Facility 

(Beamline)

ΔE / E

(meV) / (keV)

ΔQ** 

(nm-1)

Flux@sample

(photons/sec)

Beam Size 

(V×H  µm2)

F.Density@sample

(photons/sec/µm2)

Analyzer Setup

array/MaxSA[mrad2]

Sharp 

Res. Tails

ESRF (ID28) 1.5 / 21.7 0.5 3.6×109 13×6 4.6×107 9x1 array / [Φ14] ea. --

APS (30-ID-C) 1.5 / 23.7 0.6 5×109 20×35 7.1×106 9x1 array / [Φ11] ea. --

SPring-8 

(43LXU)

1.3 / 21.7 0.5 2.0×1010 50×12 3.3×107 11x4 – 2 array

/ [9.4 x 8.9] ea.

--

NSLS-II (IXS) 1.7 / 9.1 0.2 4×109 * 5×7 3.4×107 Single / [15 x 15] yes

*projected flux @ 500mA, 1.2x109 measured @ 150mA;   ** Q resolution @ 5 mrad angular acceptance.

• Undulator upgrade can achieve a potential flux 
gain by more than 5 times (using cAGU-7x1m), 
providing a total flux @ 9.1 keV of > 2x1010

photons/sec/meV. Comparable to SPring-8 43LXU
• Factor of ~2 improvement with better crystals
 Montel mirror measured reflectivity: 42%
 Current CDW analyzer efficiency: ~20%

• More Analyzers
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Thank You for your attention!

BAT MOU, Dec 8, 2008 EFAC members (2007)

2011
2015




