

Inelastic X-ray Scattering at Synchrotron and FEL sources

Massimo Altarelli European XFEL, Schenefeld, Germany

EuropeanXFELSummary

- Introduction Scattering Cross Section
- High Resolution Inelastic Scattering at Synchrotrons
- The promise of X-ray Free-Electron Lasers

X-rays interact primarily with electrons

With some simplifying assumptions:

Spin-orbit interaction

$$H_{el} = \sum_{i=1}^{N} \left[\frac{\mathbf{p}_{i}^{2}}{2m} + V(\mathbf{r}_{i}) + (e\hbar/2m^{2}c^{2})\mathbf{s}_{i} \cdot (\nabla V(\mathbf{r}_{i}) \times \mathbf{p}_{i}) \right]$$
One-electron self-consistent potential

In presence of a radiation field A (r): $\mathbf{p}_i \longrightarrow \mathbf{p}_i - (e/c) \mathbf{A}(\mathbf{r}_i)$

XFEL Interaction of electrons with the radiation field

In the weakly relativistic limit ($E^{el} - mc^2 << mc^2$, $hv << mc^2$):

$$H = H_{el} + H_{rad} + H_{int}$$
, with:

•
$$H_{el} = \sum_{i=1}^{N} \left[\frac{\mathbf{p}_i^2}{2m} + V(\mathbf{r}_i) + (e\hbar/2m^2c^2)\mathbf{s}_i \cdot (\nabla V(\mathbf{r}_i) \times \mathbf{p}_i) \right],$$

$$\bullet H_{rad} = \sum_{\mathbf{k},\alpha} \hbar \omega_{\mathbf{k}} \left(a^{\dagger}(\mathbf{k},\alpha) a(\mathbf{k},\alpha) + 1/2 \right)$$

•
$$H_{int} = \sum_{i=1}^{N} \left[(e^2/2mc^2) \mathbf{A}^2(\mathbf{r}_i) - (e/mc) \mathbf{A}(\mathbf{r}_i) \cdot \mathbf{p}_i - (e\hbar/mc) \mathbf{s}_i \cdot (\nabla \times \mathbf{A}(\mathbf{r}_i)) + (e\hbar/2m^2c^3) \mathbf{s}_i \cdot [(\partial \mathbf{A}(\mathbf{r}_i)/\partial t) \times (\mathbf{p}_i - (e/c) \mathbf{A}(\mathbf{r}_i))] \right]$$

 $\equiv H'_1 + H'_2 + H'_3 + H'_4.$

Massimo Altarelli, Eu

XFEL Inelastic scattering processes

	Elastic, non-res	Inelastic, Non-res.	Elastic Resonant	Inelastic, Resonant	
H'_1	Thomson/ Bragg scattering	Compton, Raman, S(q ,ω)			
H'_2	Orbital magnetic scattering		Resonant Elastic (REXS: charge, spin, orbital order)	Absorption, XMCD, Emission, Res. Inelastic (RIXS)	
H'_3	Spin Magnetic				
H'_4	Spin Magnetic				

Inelastic X-ray Scattering at Synchrotrons and FEL's

XFEL Golden rule, etc.,...

$$\langle \mathbf{k}'\beta\lambda'| H'_{1} |\mathbf{k}\alpha\lambda\rangle = \frac{1}{L^{3}} \left(\frac{e^{2}}{mc^{2}}\right) \frac{\hbar c}{(\omega_{k}\omega_{k'})^{1/2}} (\varepsilon_{\alpha}^{*} \cdot \varepsilon_{\beta}) \left\langle \lambda' \right| \sum_{i} e^{-i(\mathbf{k}-\mathbf{k}') \cdot \mathbf{r}_{i}} \left| \lambda \right\rangle$$

$$i = \text{all electrons}$$

$$\left(\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\,\mathrm{d}E'}\right)_{\boldsymbol{k}\alpha\rightarrow\boldsymbol{k}'\beta} = (k'/k)\left(\frac{e^2}{mc^2}\right)^2 \left|\varepsilon_{\alpha}^*\cdot\varepsilon_{\beta}\right|^2 S(\boldsymbol{q},\omega)$$

$$S(q,\omega) = \sum_{\lambda\lambda'} \sum_{ij} p_{\lambda} \langle \lambda | e^{-iq \cdot r_i} | \lambda' \rangle \langle \lambda' | e^{iq \cdot r_j} | \lambda \rangle \delta(E_{\lambda} - E_{\lambda'} + \hbar\omega)$$

 $S(q, \omega) = \sum_{\lambda i} \sum_{i,j} p_{\lambda} \langle \lambda | e^{-iq \cdot r_i} | \lambda' \rangle \langle \lambda' | e^{iq \cdot r_j} | \lambda \rangle \delta(E_{\lambda} - E_{\lambda'} + \hbar \omega)$

....and with some simple mathematics:

$$\sum_{i} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{i}} = \int d\boldsymbol{r} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}_{i}} \sum_{i} \delta(\boldsymbol{r}\cdot\boldsymbol{r}_{i}) = \rho(\boldsymbol{q})$$
$$\sum_{\lambda'} \langle \lambda | A | \lambda' \rangle \langle \lambda' | B | \lambda \rangle \delta(E_{\lambda} - E_{\lambda'} + \hbar\omega)$$
$$= \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} dt e^{-i\omega t} \sum_{\lambda'} \langle \lambda | A | \lambda' \rangle \langle \lambda' | B | \lambda \rangle e^{i(E_{\lambda'} - E_{\lambda})t/\hbar}$$

XFEL The beauty of non-resonant inelastic scattering

One knows exactly what is being measured! A well-defined correlation function

No such luck in RIXS! (...although RIXS is wonderful!)

Inelastic X-ray Scattering at Synchrotrons and FEL's

XFEL Why phonons with X-rays? Better use neutrons?

 Neutrons: Kinematics forbids excitations with velocity > ~4 000 m/s
 Solids: get away with higher Brillouin zones.
 Disordered systems: no such way out!

Figure 2 – The kinamtcs region accessible to neutron scattering experiments (region inside the curves) is reported for different scattering angles (θ =0, 30, 60 and 90) in the E/E_i vs Q/k_i plane.

```
Neutrons \lambda =0.1 nm, E ~ 81.2 meV
X-rays \lambda =0.1 nm, E ~ 12.4 keV
```

■X-rays: meV resolution means $\Delta E/E \sim 10^{-7}!!$

XFEL Summary

- Introduction Scattering Cross Section
- High Resolution Inelastic Scattering at Synchrotrons
- The promise of X-ray Free-Electron Lasers

Inelastic X-ray Scattering at Synchrotrons and FEL's European XFEL Phonon spectroscopy with ~ meV resolution ESRF (ID28) Analyzer Array Detector 9x1 KB Backscattering HRM eV Beam Focussing Mirror Sample Analyzer Array SPring-8 (BL35, BL43) 4x3, 6x4 (9x4) KΒ meV Beam Offset eV Beam Crystals High order near back-reflections of Si 17.79 keV (999), 21.75 keV (11 11 11)), 25.7 keV (13 13 13)

XFEL And of course....

APS sectors 3 and 30...

Massimo Altarelli, European XFEL

Resolution: e.g. Si (9 9 9) > 1.8 meV
 Si (11 11 11) > 0.77 meV
 Si (13 13 13) > 0.32 meV

Energy transfer: max ~ 200 meV (ESRF ID28, HERIX,...)

Flux on sample: 10⁹ to ~10¹¹ photons/s (depending on resolution)

XFEL Francesco Sette *et al.*, *Science* 280, 1550 (1998)

17

IXS spectra of glassy glycerol at 175 K at the indicated Q values.

Massimo Altarelli, European XFEL

See e.g. C. Masciovecchio et al., AIP Conf. Proceedings 705, 1190 (2004)

mber 2016, APS, ANL

Massimo Alt

UHRIX: Ultra-High-Resolution IXS Spectrometer

Joint R&D Effort of APS and DLS

Courtesy of Y. Shvyd'ko, ANL, APS

PRL 99, 026401 (2007)

35

PHYSICAL REVIEW LETTERS

week ending 13 JULY 2007

Nonresonant Inelastic X-Ray Scattering and Energy-Resolved Wannier Function Investigation of *d-d* Excitations in NiO and CoO

B. C. Larson,¹ Wei Ku,² J. Z. Tischler,¹ Chi-Cheng Lee,^{2,3} O. D. Restrepo,^{1,4} A. G. Eguiluz,^{1,4} P. Zschack,⁵ and K. D. Finkelstein⁶

NiO CoO $\alpha = 36^{\circ}$ 30 $\alpha = 46^{\circ}$ = 7 A⁻¹ = 3.75 A $= 90^{\circ}$ s(q, w) (eV ⁻¹ nm⁻³) [111] $\alpha = 36^{\circ}$ 0- [001] $\alpha = 75^{\circ}$ Uncert: Uncert. ∆E (eV) n ∆E (eV) 3 3

Energy transfer:

~ several eV

FIG. 2 (color online). High-resolution (0.3 eV) measurements of the q magnitude and orientation dependence of the d-d peak excitations for NiO and CoO; α is the q-orientation angle between the 110 and 001 directions [see Figs. 4(f) and 4(h)].

ortunities and Feasibility

European
XFEL S(q,
$$\omega$$
) and the Fluctuation-Dissipation Theorem
$$S(q, \omega) = \frac{1}{\pi} \frac{1}{1 - e^{-\beta\omega}} \chi_{\rho^+(q)\rho(q)}''(\omega)$$

$S(q,\omega)$ is related to the imaginary (= *dissipative*) part of the electron density-density response function...

S(q,ω) => χ" (ω) => Kramers- Kronig => χ' + i χ'' = density-density response => Fourier tr. => density – density response in time (P. Abbamonte)

Massimo Altarelli, European XFEL

XFEL Summary

- Introduction Scattering Cross Section
- High Resolution Inelastic Scattering at Synchrotrons
- The promise of X-ray Free-Electron Lasers

24

XFEL HARD X-ray FEL sources worldwide

Project	LCLS I, US	SACLA, JP	European XFEL	SwissFEL, CH	PAL-XFEL, KR	LCLS II, US
Max. electron energy (GeV)	14.3	8.5	17.5	5.8	10	4
Wavelength range (nm)	0.1-4.4	0.06-0.3	0.05-4.7	0.1-7	0.06-10	0.25 – 4.7
Photons/pulse	~ 10 ¹²	2 x 10 ¹¹	~ 10 ¹²	~ 3.6 x 10 ¹⁰	10 ¹¹ -10 ¹³	2 10 ¹¹ – 2 10 ¹⁰
Peak brilliance	2 x 10 ³³	1 x 10 ³³	5 x 10 ³³	7 x 10 ³²	1.3 x 10 ³³	
Pulses/second	120	60	27 000	100	60	10 ⁵ - 10 ⁶
Date of first beam	2009	2011	2017	2017	2016	2019

Massimo Altarelli, European XFEL

European XFEL

L Potential for high repetition rate XFEL's

Massimo Altarelli, European XFEL

XFEL Real

_ Realistic estimates for source and spectrometer

ISSN 1600-5775

Received 8 September 2015 Accepted 28 December 2015

Edited by M. Yabashi, RIKEN SPring-8 Center,

Ultra-high-resolution inelastic X-ray scattering at high-repetition-rate self-seeded X-ray free-electron lasers

Oleg Chubar,^a Gianluca Geloni,^b Vitali Kocharyan,^c Anders Madsen,^b Evgeni Saldin,^c Svitozar Serkez,^c Yuri Shvyd'ko^d* and John Sutter^e

^aNational Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA, ^bEuropean X-ray Free-Electron Laser, Albert-Einstein-Ring 19, 22761 Hamburg, Germany, ^cDeutsches Elektronen-Synchrotron, 22761 Hamburg, Germany, ^dAdvanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA, and ^eDiamond Light Source Ltd, Didcot OX11 0DE, UK. *Correspondence e-mail: shvydko@aps.anl.gov

J. Synchrotron Rad. (2016). 23, 410-424

XFEL European XFEL, SASE2 undulator configuration

Combination of high rep-rate
HXRSS and Tapering
Tapering: increases power
HXRSS: decreases bandwidth

Figure of merit for	IXS
spectral flux	

O. Chubar, G. Geloni, V. Kocharyan, A. Madsen, E. Saldin, Y. Shvyd'ko, J. Sutter

		Units
Undulator period	40	mm
Periods per segment	125	
Total number of segments	35	
K parameter (r.m.s.)	2.658	
Intersection length	1.1	m
Wavelength	0.1358	nm
Energy	17.5	GeV
Charge	250	pC
Horizontal normalized slice emittance (*)	4.0×10^{-7}	m rad
Vertical normalized slice emittance (*)	3.6×10^{-7}	m rad
Peak current	5.0	kA
Energy spread σ_{γ} (*)	0.96	

Massimo Altarelli, European XFEL

28

XFEL Simulations from undulator to sample

Location (method)	Δt (ps)	ΔE (meV)	Flux (photons s ⁻¹)	Spectral flux (photons s ⁻¹ meV ⁻¹)
Undulator exit, $z = 74$ m (<i>GENESIS</i>)	0.014	950	2.0×10^{17}	2.1×10^{14}
Sample, z = 1018 m (SRW wavefront propagation)	225	0.087	6.3×10^{12}	7×10^{13}
Sample, z = 1018 m (ray-transfer matrix)	190	0.09		

.

Inelastic X-ray Scattering at Synchrotrons and FEL's

XFEL Filling the gap in energy-momentum space

016, APS, ANL

29

XFEL Ultra-High Resolution Inelastic X-ray Scattering

Conclusion:

High repetition rate hard x-ray FEL's deliver 2-3 orders of magnitude more flux in a meV bandwidth then synchrotron sources

Source: ~ 2 10¹⁴ ph/s/meV at 9 keV possible at European XFEL, SASE2 self-seeded, tapered undulator

 \rightarrow ~ 7 10^{12} ph/s in 90 μeV BW at the sample, with UHRIX or X-ray Echo spectrometer

30

European

XFEL An opportunity not to be missed!

Ultra-high resolution inelastic scattering can exploit extraordinary average brightness of high rep. rate hard x-rays FEL's for novel research

Thank you for your attention!

XFEL Some reviews to learn more...

W. Schulke, "Inelastic Scattering by Electronic Excitations", in Handbook on Synchrotron Ra-

diation, Vol. 3, ed. G. Brown and D.E. Moncton, (Elsevier Science Publ., 1991).

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 7511-7523

PII: S0953-8984(01)25536-2

Theory of inelastic x-ray scattering from condensed matter Sunil K Sinha

Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

http://arxiv.org/abs/1504.01098

Introduction to High-Resolution Inelastic X-Ray Scattering

Alfred Q.R. Baron

Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, 1-1-1 Kouto, Sayo, Hyogo 679-5148 Japan Research and Utilization Division, SPring-8/JASRI, 1-1-1 Kouto, Sayo, Hyogo 679-5198 Japan

LETTERS PUBLISHED ONLINE: 27 OCTOBER 2013 | DOI: 10.1038/NPHYS2788 physics

Fourier-transform inelastic X-ray scattering from time- and momentum-dependent phonon-phonon correlations

M. Trigo^{1,2}*, M. Fuchs^{1,2}, J. Chen^{1,2}, M. P. Jiang^{1,2}, M. Cammarata³, S. Fahy⁴, D. M. Fritz³, K. Gaffney², S. Ghimire², A. Higginbotham⁵, S. L. Johnson⁶, M. E. Kozina², J. Larsson⁷, H. Lemke³, A. M. Lindenberg^{1,2,8}, G. Ndabashimiye², F. Quirin⁹, K. Sokolowski-Tinten⁹, C. Uher¹⁰, G. Wang¹⁰, J. S. Wark⁵, D. Zhu³ and D. A. Reis^{1,2,11}*

... Talk by David Reis => 0.3 meV resolution!