

# Cryogenic X-ray Detector R&D at APS

Antonino Miceli

July 31, 2013



# **Cryogenic X-ray Detector R&D**

 Energy dispersive semiconductor detectors have almost reached their theoretical limits

e.g., Silicon Drift Diodes have energy resolution ~ 150 eV at 6 keV

#### Limited R&D on spectroscopic detectors

- Only effort is Silicon array detector of Peter Siddons (BNL) and Chris Ryan (Australia)
  - Using Silicon arrays to achieve large collection solid angles for micro-probe XRF experiments

#### Leverages local facilities and existing projects

- Argonne's Nanocenter (CNM) for device fabrication
- Transition Edge Sensors for UChicago/ANL cosmology

#### Example Application: X-ray Microscopy

- Mapping the distribution of elemental composition
  - 100 eV resolution is sufficient
  - Need more solid angle, count rate, and P/B to reduce minimum detectable limits



B. Twining, S. Baines, N. Fisher, J. Maser, S. Vogt, C. Jacobsen, A. Tovar-Sanchez, and S.Sañudo-Wilhelmy, *Anal.. Chem.* **75**, 3806 (2003)

- How to map chemical states at nanometer-scale?
  - "Nano-spectroscopy"
  - Today: XANES with no spatial resolution
  - Are there alternatives?



# X-ray Emission Spectroscopy Imaging

- 2D mapping of chemical states the same way we acquire elemental maps today
- Detector Requirements
  - eV resolution
  - Broadband (multiple elements at the same time)
  - Count Rates > 100 kcps
- This may be the only way one could consider doing spectroscopy with < 20 nm spatial resolution on radiation sensitive materials (e.g., organic photovoltaics).





Taken with crystal analyzer (Pieter Glatzel et al)

#### **Microwave Kinetic Inductance Detectors**

- Excess quasiparticles or ∆T generated by x-ray causes an inductance increase (i.e., "kinetic inductance")
  - Measure inductance change in a LC resonating circuit



Multiplexing: Lithographically vary geometric inductance/resonant frequency...



#### Observables....





- 2024 pixels demonstrated in 2013 (UCSB/JPL)
- Groups are contemplating 10-100k pixels today (FNAL)
  - Limited by room temperature electronics

# MKIDs @ APS for synchrotrons

- The goal is energy resolution < 5eV with good count rate capabilities (> 100kcps)
- Three Main Aspects:
  - **1.** Device Fabrication
    - Completely in-house with dedicated deposition chamber
  - **2.** Cryogenics and Device Characterization
    - Turnkey 100 mK cryostat (cryogen-free)
    - 3. Readout electronics
      - Multi-pixel implementation in progress (Tim Madden)



### Anatomy of a thermal MKID (i.e., calorimeter)



0.5 x 300 x 300  $\mu m$  Tantalum Absorber 100 nm WSi\_2 resonator

## **Fabrication Process**



#### Measurements

- Find resonance frequency and monitor changes in phase (and amplitude)
  - Using mixing techniques







## Current status & future work

#### Measured energy resolution = 90 eV with Fe-55

- This is the first version of this device.
- Limited by rise-time variation
  - Need to weaken thermal coupling between resonator and absorber or improve thermalization with a normal metal underlayer.

#### Baseline Resolution = 45 eV

- This device is considerably noisier than most given SiN under capacitor, especially at low frequencies.
- SiN mesa design to be fabricated next week.

#### Future Work

- Reduce noise (iterating between testing and fab)
- Thicker absorbers (e.g., mushroom absorbers on SU-8 posts)
- Implementation of 256-pixel readout electronics

# The Team

- Tom Cecil (XSD Staff)
- Lisa Gades (XSD staff)
- Orlando Quaranta (Post-doc)
- Tim Madden (XSD Staff)
- Antonino Miceli (XSD Staff)

# Thank you for your attention!

