uProbeX TWG Talk

Arthur Glowacki
Software Engineering Specialist
AES Software Services Group
Argonne National Laboratory
aglowacki@anl.gov

Ke Yue : kyue@aps.anl.gov
Stefan Vogt : svoigt@aps.anl.gov
Charlotte Gleber : sch.gleber@gmail.com
David Vine : dvine@aps.anl.gov
8/21/2014
Background

- Started working at APS in March 2013
- Worked on TXM software at sector 32ID
- Collaboration work with Diamond Light Source for HDF writer plugin in area detector
- uProbeX application
- QImaging area detector plugin
Typical Workflow

- **Visualize samples on EPI Fluorescence Microscope**
 - Verify sample quality
 - Localize area of interest
 - With coordinates to later find the area in the x-ray Microprobe
 - Acquire complimentary data / images
 - Brightfield, phase, fluorescence: DNA, Immunolabelling, GFP, ect
- **Kinetic mounts to move sample around**
 - Visible light microscope, 2IDB, 2IDD, 8BM, (21ID, 26ID)
- **Find fiducials (eg, corner of window, marker on EM grid) in x-ray microprobe**
- **Apply coordinate transform**
EPI Fluorescence Microscope to X-Ray Microprobe

2-ID-E Hard X-ray Microprobe

Epi-Fluorescence Microscope

Sample in sample chamber, purge with He

kinematic specimen mount
specimen
condenser

20x obj.
QI Viewer

- Used to control light microprobe
- Saves SWS workspace
 - Contain coordinate information
 - Tile Overlap
 - Can Export mosaic TIFF image
Coordinate Transformation

Quick & dirty: 10-20 microns
Careful: <5 microns

<table>
<thead>
<tr>
<th></th>
<th>measured input</th>
<th>predicted microscope</th>
<th>measured micropro</th>
<th>x</th>
<th>y</th>
<th>leica x</th>
<th>leica y</th>
<th>XRM x</th>
<th>XRM y</th>
<th>delta x</th>
<th>delta y</th>
</tr>
</thead>
<tbody>
<tr>
<td>P (center)</td>
<td>Top sample (A-D)</td>
<td>Surface 2b-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A (up, SL)</td>
<td>71.517</td>
<td>43.875</td>
<td>0.1132</td>
<td>1.6645</td>
<td>0.1132</td>
<td>1.6645</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B (3down, BR)</td>
<td>71.137</td>
<td>44.496</td>
<td>0.4801</td>
<td>1.0369</td>
<td>0.4801</td>
<td>1.0369</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C (3right, BL)</td>
<td>71.128</td>
<td>44.497</td>
<td>0.4962</td>
<td>1.0348</td>
<td>0.4962</td>
<td>1.0348</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D (3left, AR)</td>
<td>71.297</td>
<td>43.894</td>
<td>0.3361</td>
<td>1.5410</td>
<td>0.3361</td>
<td>1.5410</td>
<td>2.51</td>
<td>-1.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b01</td>
<td>71.260</td>
<td>44.006</td>
<td>0.3738</td>
<td>1.5282</td>
<td>0.3738</td>
<td>1.5282</td>
<td>4.77</td>
<td>-0.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b02</td>
<td>72.055</td>
<td>43.764</td>
<td>-0.4359</td>
<td>1.7868</td>
<td>-0.4359</td>
<td>1.7868</td>
<td>-8.36</td>
<td>5.29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b03</td>
<td>72.052</td>
<td>43.746</td>
<td>-0.4324</td>
<td>1.8046</td>
<td>-0.4324</td>
<td>1.8046</td>
<td>-8.01</td>
<td>6.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b04</td>
<td>72.052</td>
<td>43.746</td>
<td>-0.4118</td>
<td>1.8052</td>
<td>-0.4118</td>
<td>1.8052</td>
<td>-8.01</td>
<td>6.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b05</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b06</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b07</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b08</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b09</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b10</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b11</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b12</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b13</td>
<td>72.021</td>
<td>43.673</td>
<td>0.4416</td>
<td>1.8598</td>
<td>0.4416</td>
<td>1.8598</td>
<td>1.41</td>
<td>9.75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total error: 53.1248 37.94 15.18
Results
uProbeX Features

- Open SWS workspace generated by QI software light microscope
 - Parse coordinates
- Display stitched image with coordinates
- Allow calibration markers to be places
 - Markers hold light microscope coordinates and allow entry of x-ray microprobe coordinates
- Ability to run minimization solver for transformation coefficients
 - Users mode allows basic X and Y offsets, Admin mode allow more control
- Create region boxes with transformed x-ray microprobe coordinated over existing light microscope image
- Export region box properties to outside applications
 - Can call python or shell scripts, allows channel access through scripts
- Ability for users to take software home and view data
uProbeX Specs

- Supported platforms
 - Windows 7 32 and 64 bit
 - Linux 64 bit
 - Mac OSX (coming soon)

- Available to download from our build server
 - Jenkins build server
 - SSG Updater application

- Python support
 - Linked to support python
 - Can still be used if python not found on system

- Developed by AES SSG
 - Arthur Glowacki: aglowacki@anl.gov
 - Ke Yue: kyue@aps.anl.gov
Test Sample

- Selected four calibration points
 - Named A, B, C, and D
- Different colors to easily differentiate between points.
- Mouse over Light and X-Ray coordinates available at bottom of the scene
- Able to quickly adjust X and Y offset coefficients in transformation equation
- Standard Zoom In/Out controls
Find Microprobe coordinates for Reference Points

- X-Ray alignment
- Fill in measured X and Y for each calibration point
- Run minimization solver to fine tune transformation
Create Regions

- Created four region boxes
 - Dynamically named
 - Saved/Restored when workspace is closed/opened
- Region boxes also have customizable colors
- Display predicted center X, Y, width, and height of the region box. (X-Ray coordinates)
- Programmable context menu (right click) options
- Can call python or shell script with region box properties as parameters
Scan of Reference Corner A

- X-Ray scan of region box A.
- Calibration looks good.
Select New Scan Region

- New region box created
- Send the coordinates to x-ray microprobe to perform a scan
X-Ray Microprobe of Scan Region

Off by 3um in X, 4.5um in Y
Expected from solver solution
Region Box Preferences

- Call user defined python scripts
- One way communication, send region box properties as parameters to python or shell functions
- Added python script is scanned for all functions and populated in table
- Ability to uncheck (hide) functions from users
- All callable functions appear as context menu items when right clicking a region box
Solver Preferences

General solver is implemented using Nelder-Mead cminpack implementation

General Transformer was supplied by Stefan Volg

Python Transformer
– Allows custom transformers
– Bidirectional, send calibration point, returns transformed point

Python Solver
– SciPy, NumPy
– User can make their own
– Add dynamic coefficients
Ideas for Expanding the Software

- **Ability to load HDF5 results and overlay on light microscope data**
 - Give the user the ability to blend, manage layers of the data
 - View multiple layers at once

- **Multi-point scan regions**
 - User defined multi point scan sections
 - Does not have to be rectangular
 - Properties can be passed to python or shell script like current region box
Documentation and Build

- Confluence
 - https://confluence.aps.anl.gov/display/CLMFS/Main
 - How to Install
 - FAQs

- Jenkins
 - Build Server
 - Supports Window 7 and Linux, Soon will have Mac OSX also
 - User does not have to compile the software
Summary

- Unify multiple application into one to simplify experiment process
- Boost beam line productivity by 10 – 30 %
- Sent scan properties through script to remove user error
- Integrate with Python to allow more dynamic user configurations
- For more information Email us
 - Arthur Glowacki : aglowacki@anl.gov
 - Ke Yue : kyue@aps.anl.gov
- Thanks to Charlotte Gleber and David Vine for testing and feedback of the software.
- Thanks to Stefan Vogt and Charlotte for presentations slides.
- Questions?