Magnetism of Eu and Dy under Extreme Pressures

Wenli Bi

Advanced Photon Source, Argonne National Laboratory, Argonne COMPRES (University of Illinois at Urbana-Champaign)

High pressure SMS experiment setup

Basic Mössbauer parameters of ¹⁵¹Eu

Isotope	E_{γ} [keV]	a[%]	Γ_0 [neV]	$ au_0 \ [m ns]$	I _g I _e Multi- polarity	
$^{181}\mathrm{Ta}$	6.23	99.9	0.067	9870	7/2 9/2 E1	
$^{169}\mathrm{Tm}$	8.41	100	114	5.8	$1/2 \ 3/2 \ M1$	
⁸³ Kr	9.40	12.0	3.3	212	9/2 7/2 M1	
57 Fe	14.41	2.1	4.7	141	1/2 3/2 M1	
¹⁵¹ Eu	21.53	47.8	47.0	14.1	5/2 7/2 M1	
^{149}Sm	22.49	13.8	64.1	10.3	7/2 5/2 M1	
^{119}Sn	23.87	8.6	25.7	25.7	$1/2 \ 3/2 \ M1$	
¹⁶¹ Dy	26.65	18.9	16.2	40.8	5/2 5/2 E1	
$^{121}\mathrm{Sb}$	37.13	57.25	130.0	5.0	5/2 7/2 M1	
40 K	29.83	0.0117	160.5	4.13	4 3 M1	
⁶¹ Ni	67.40	1.25	88.3	7.5	3/2 $5/2$ M1	

R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), Ch. 2, p. 25.

Hyperfine interactions of ¹⁵¹Eu

quadrupole interaction in Eu

magnetic interaction in Eu

Simulated Mössbauer data in ¹⁵¹Eu

Energy domain QS = 5 mm/sec QS = 10 mm/sec-12 -8 0 -4 4 8 velocity (mm/sec) 1e-06 H = 26 T H = 10 T H = 5 T-40 -20 0 20 velocity (mm/sec)

Time domain

Experimental lab Mössbauer data in ¹⁵¹Eu

Cohen et. al., Phys. Rev. 184, 263 (1969). Barrett and D. Shirley, Phys. Rev. 131, 123 (1963).

Shaken et al., Phys. Rev. Lett. 55, 312 (1985). Malik et al., Phys. Rev. Lett. 55, 316 (1985).

Eu²⁺: (4*f*⁷, *J*=7/2)

Eu³⁺: (4*f*⁶, *J*=0)

Data taken from Mössbauer effect data center, http://www.medc.dicp.ac.cn/

Isomer shift scale of ¹⁵¹Eu under pressure

Courtesy of E. E. Alp

September 2010

Pressure induced magnetic transition in Eu $(4f^75d^06s^2 J = 7/2)$

Bi et al., Phys. Rev. B. 93, 184424 (2016).

No significant valence change in Eu

Röhler, *Phys. B+C 144, 27 (1986).* Bi *et al., Phys. Rev. B.* **93**, 184424 (2016).

Basic Mössbauer parameters of ¹⁶¹Dy (4 $f^95d^16s^2$, J = 15/2)

Isotope	E_{γ} [keV]	a[%]	Γ_0 [neV]	$ au_0 \ [m ns]$	$I_g I_e \mathbf{I}_p$	Multi- olarity
181 Ta	6.23	99.9	0.067	9870	$7/2 \ 9/2$	E1
$^{169}\mathrm{Tm}$	8.41	100	114	5.8	$1/2 \ 3/2$	M1
⁸³ Kr	9.40	12.0	3.3	212	9/2 7/2	M1
57 Fe	14.41	2.1	4.7	141	$1/2 \ 3/2$	M1
$^{151}\mathrm{Eu}$	21.53	47.8	47.0	14.1	$5/2 \ 7/2$	M1
$^{149}\mathrm{Sm}$	22.49	13.8	64.1	10.3	7/2 5/2	M1
^{119}Sn	23.87	8.6	25.7	25.7	$1/2 \ 3/2$	M1
¹⁶¹ Dy	26.65	18.9	16.2	40.8	5/2 $5/2$	E1
^{121}Sb	37.13	57.25	130.0	5.0	$5/2 \ 7/2$	M1
^{40}K	29.83	0.0117	160.5	4.13	$4 \ 3$	M1
⁶¹ Ni	67.40	1.25	88.3	7.5	$3/2 \ 5/2$	M1

R. Röhlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation, (Springer Berlin Heidelberg, Berlin, Heidelberg, 2005), Ch. 2, p. 25.

Magnetism in Dy

G.J. Bowden, D.S.P. Bunbury, and J.M. Williams, Proc. Phys. Soc. 91, 612 (1967).

40 cm/s splitting (0.12 ns), beyond the APD time resolution (1 ns). As a result, only the inner splitting can be resolved from time domain spectrum.

Y. V Shvyd'ko et al., Europhys. Lett. 56, 309 (2001).

Magnetic hyperfine field in Eu (6s²4f⁷5d⁰)

$$H_{hf} = H_C + H_{CE} + H_n$$

TABLE III. Analysis of the hyperfine fields in Eu metal and Gd metal.

		H _{eff} (kOe) Eu	H _{eff} (kOe) Gd
$H_C \longrightarrow$	Core polarization	- (340±20) ª	-(340±20)b
$H_{CE} \longrightarrow$	Conduction-electron polari- zation by own 4f electrons	$+(190\pm 20)^{\circ}$	+(240±50)°
$H_n \longrightarrow$	Neighbor effects: conduc- tion-electron polariza- tion+overlap+covalency	-(115±20)°	-(200±60)ª
	Metal	- (265±5)°	-(350±35)f

 H_C : insensitive to volume change. H_{CE} and H_n : dependent of volume (pressure) change. RKKY interaction.

Elmegid and Kaindl, hyperfine interactions 4, 420 (1978). Klein, Wortmann and Kalvius, 18,291 (1976); Nowik, Dunlap and Wernick, Phys. Rev. B 8, 238 (1973). Hüfner and Wernick, Phys. Rev. 173, 448 (1968)