Workshop on Nuclear Resonant Scattering and Data Analysis November 16 – 19, 2017, Advanced Photon Source

Studies of Thin-Film Magnetism Using Nuclear Resonant Scattering

Ralf Röhlsberger

Deutsches Elektronen-Synchrotron DESY, Hamburg

Outline

- 1. Hyperfine Interactions: Temporal beat patterns as fingerprints of magnetic properties
- 1. Magnetic structure of thin films, multilayers and nanostripes
 - a. Spin structure of exchange-spring magnets
 - **b.** Magnetic order in Fe/Fe-oxide heterostructures
 - c. Spin-structured multilayers for precision spintronics
- 1. Magnetic dynamics in thin films and nanostructures
 - a. Spin precession at ferromagnetic resonance

Nuclear Resonant Forward Scattering of Synchrotron Radiation

Pulsed broadband excitation of hyperfine-split nuclear levels

The 14.4 keV nuclear resonance of ⁵⁷Fe

$$τ_0$$
 = 141 ns, $Γ_0$ = 4.7 neV

The beat pattern is a fingerprint of the magnetic structure of the sample:

Magnetic Hyperfine Interaction

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 - 19 Nov 2017 | Page 4

Directional dependence

	Geometry	Nuclear Scattering Length	Time spectrum
		$N(\omega)$	$\sigma \rightarrow \text{unpolarized}$
A	$\hat{\pi}$ \hat{k}_0 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} F_{+1} + F_{-1} & -\mathrm{i} \left(F_{+1} - F_{-1} \right) \\ \mathrm{i} \left(F_{+1} - F_{-1} \right) & F_{+1} + F_{-1} \end{array} \right)$	www
В	$\hat{\pi}$ \hat{k}_0 \hat{m} $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} F_{+1} + F_{-1} & 0 \\ 0 & 2F_0 \end{array} \right)$	
С	\hat{m} \hat{k}_0 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} 2F_{0} & 0 \\ 0 & F_{+1} + F_{-1} \end{array} \right)$	MMM
D	$\hat{\pi}$ \hat{m}_1 \hat{k}_0 \hat{m}_2 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} F_{+1} + F_{-1} & 0 \\ 0 & F_{+1} + F_{-1} \end{array} \right)$	
E	$\hat{\pi}$	$f_{\sigma\sigma} = f_{\pi\pi} = rac{3}{32\pi} \left(F_{+1} + F_{-1} + 2F_0 \right)$	hmm
F		$f_{\sigma\sigma} = \frac{3}{16\pi} \left(F_{+1} + F_{-1} \right)$ $f_{\pi\pi} = \frac{3}{32\pi} \left(F_{+1} + F_{-1} + 2F_0 \right)$	MMMMMM
G		$f_{\sigma\sigma} = f_{\pi\pi} = rac{1}{8\pi} \left(F_{+1} + F_{-1} + F_0 \right)$	
			$t(\tau_0)$ 1

From: Phys. Rev. B 67, 245412 (2003)

Electric Hyperfine Interaction

Directional dependence

R. Röhlsberger, Springer Tracts in

Modern Physics, Vol. 208 (2005)

From:

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 - 19 Nov 2017 | Page 6

Diffraction as Method of Structure Determination

Optical Properties in the X-ray Regime

X-ray Optical Properties of Matter (Example: ⁵⁷Fe)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | ANL/APS, 16 - 19 November 2017 | Page 9

Structure Determination in SpaceTime (2)

Temporal beats and magnetization direction

The temporal beat pattern sensitively depends on the orientation of the

Magnetization M

relative to the

Photon wavevector k₀

→ Use isotopic probe layers to investigate the depth dependence of magnetic properties

Permanent Magnets: Evolution of the Energy Product

Exchange hardening in nanostructured two-phase systems:

Hard phase with high coercivity

Soft phase with high magnetization

R. Skomski and J. Coey: PRB 48, 15812 (1993)

Exchange-Coupled Bilayers

The Spin Structure of Magnetic Bilayers

Fe on FePt

Soft – magnetic Fe

Hard – magnetic FePt with uniaxial anisotropy

- Exchange coupling at the interface: Parallel alignment of Fe and FePt moments
- With increasing distance from the interface: Coupling becomes weaker
- External field H induces spiral magnetization
- Return to parallel alignment for H = 0

Exchange-Spring magnets

Imaging the Internal Spin Structure of Exchange-Spring Magnets

Domain wall compression with increasing external field

Fe on FePt

Simulation of Exchange-Spring Layer Systems

E. Fullerton et al. PRB 58, 12193 (1998)

Minimize the magnetic free energy

 $\frac{\partial E}{\partial \varphi_i} = 0$

Depth profiling of magnetic properties

Depth Dependence of the Oxide Phase

RR, H. Thomas, K. Schlage, T. Klein, J. Magn. Magn. Mater. 282, 329 (2004)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 – 19 Nov 2017 | Page 18

New magnetic order in Fe/Fe-oxide heterostructures

(1) New magnetic order in Fe/Fe-oxide heterostructures

(1) New magnetic order in Fe/Fe-oxide heterostructures

Magnetic thin films and nanostructures for high-density magnetic recording

→ Read heads are subject to high-frequency magnetic fields

Eddy current problem at high frequencies : Possibilities with new materials?

- Oxide / insulating spacer layer:
- \rightarrow efficient eddy current damping¹

Fe/Fe-oxide Heterostructures:

Materials with high magnetisation and low electrical conductivity

¹G.S.D Beach and A.E. Berkowitz, PRL 91, 267201 (2003)

Fe/Fe-Oxide Multilayer: Magnetic Superstructure

Fe/Fe-oxide Multilayers Coupling strength and magnetization reversal

Th. Diederich, S. Couet, and RR, Phys. Rev. B 76, 54401 (2007)

What is the origin of the magnetic coupling ?

\rightarrow Investigate the nature of the buried native oxide !

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 – 19 Nov 2017 | Page 23

Non collinear coupling in the system Fe/Fe-oxide/Fe

The strong coupling between the Fe layers excludes an RKKY type of interlayer coupling

→ Coupling is mediated by an antiferromagnetically ordered oxide (at room temperature) !!

Ideal systems, 2 possibilities:

Real system, roughness:

Evolution of the native oxide during growth

An in-situ XAS study

Chemistry of the free native oxide

Fitting XANES : Linear combination of reference spectra allows to extract the relative concentration of the different species

Chemistry of the *buried* native oxide

The Fe/Fe-Oxide Story: Summary

Fe²⁺

R

Fe

(Doctoral thesis of Sebastien Couet, Hamburg, 2008)

- Native oxide exhibits a mixture of chemical states – not magnetic
- Fe deposition leads to a FeO-like structure – not magnetic [1]
- FM order in the metal stabilizes AFM order in the oxide at room temperature [2]
- Exchange coupling at both interfaces of the oxide leads to a non-collinear arrangement of the Fe layers

[1] S. Couet et al., Phys. Rev. Lett. **101**, 056101 (2008)
[2] S. Couet et al., Phys. Rev. Lett. **103**, 097201 (2009)

Spin-structured multilayers: A new class of materials for precision spintronics

Tuning the Magnetic Anisotropy of Ultrathin Films via OID

Oblique incidence deposition allows to induce a strong and adjustable magnetic anisotropy in ultrathin magnetic films.

Magnetic Hardening of a Single Iron Layer

Magnetic Hardening of a Single Iron Layer

Applicable also to multilayer systems with crossed easy axis?

Probing Spin Structures in Multilayers via Nuclear Resonant Diffraction

Arbitrary in-plane spin structures via oblique-incidence deposition

- \rightarrow Magnetic order does not rely on interlayer coupling
- \rightarrow No limitation to prepare vertical stacking profile.

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 - 19 Nov 2017 | Page 33

Tuning of MR via Oblique Incidence Deposition

Tailored Sequential Layer Switching via polar deposition angle

Crossed Magnetization Axes via azimuthal deposition angle

K. Schlage et al., Adv. Funct. Mater. 26, 7423 (2016)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 - 19 Nov 2017 | Page 34

Application: Precision Rotational Sensing

- extremely sharp switching
- field-dependent switching characteristics signal shape: **peak or plateau**
- with crossed magnetization axes: sensitive to frequency and sense of rotation

European Patent EP 2 846 334 A1 (2015), pending

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 16 – 19 Nov 2017 | Page 35

Determination of magnetic dynamics via nuclear resonant scattering

Magnetic resonances

magnetic storage \rightarrow switching times, energy losses

Spin manipulation

functional spin devices

www.hitachigst.com

Y. Tserkovnyak et al. , Phys. Rev. Lett. 88, 117601 (2002)

Spin excitations in magnetic microstructures

Excitation of uniform spin precession

→ Kittel mode at ferromagnetic resonance

Experimental Setup

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL 16 - 19 Nov 2017 | Seite 39

Spin trajectory determination

L. Bocklage et al., Phys. Rev. Lett. 114, 147601 (2015)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL 16 - 19 Nov 2017 | Seite 40

Summary

(1) Spin structure of exchange-spring magnets ⁵⁷Fe isotopic probe layers reveal the magnetic depth profile of exchange-coupled layers

(2) Magnetic order in Fe/Fe-oxide heterostructures^M Antiferromagnetic native oxide mediates noncollinear coupling of ferromagnetic layers

(3) Spin-structured multilayers: A new class of materials for precision spintronics Tuning of magnetoresistance via oblique-angle deposition

(4) Spin-trajectories in thin films under FMR conditions

160 mT

Н

