The NRS 2017 workshop will take place in the APS building 402, room E1100.

Saturday, Nov. 18

<u>Thursday, Nov. 16, 2017</u>			Morning session		
Morning session			8:30 am 9:00 am – 9:30 am	Breakfast Magnetism in Eu and Dy under extreme	Wenli Bi (ANL/UIUC)
8:00 am	Registration and breakfast		9:30 am - 10:25 am	CONUSS	Wolfgang Sturbahn
8:30 am – 8:40 am	Welcome remarks		10:25 am – 10:40 am	Coffee break	wongang olamann
8:40 am – 9:40 am	Introduction to Mössbauer spectroscopy – part I	Raphael Hermann (ORNL	10:40 am – 12:30 pm 12:30 pm	CONUSS Lunch	Wolfgang Sturhahn
9:40 am – 9:55 am	Coffee break				
9:55 am – 10:55 am	Spectroscopy (SMS)	Wolfgang Sturhahn (Caltech)	Afternoon session		
10:55 am - 12:20 pm	CONUSS Crown Bhoto	Wolfgang Sturhahn			
12:20 pm 12:30 pm	Lunch		1:30 pm – 3:30 pm 3:30 pm – 3:45 pm	CONUSS	Wolfgang Sturhahn
12.30 pm			3:45 pm – 4:25 pm	Instrumentation and recent development at Sector 3	Jiyong Zhao (ANL)
Afternoon session			4:45 pm – 5:30 pm	CONUSS	Wolfgang Sturhahn
	kan sari timbermadar kas		5:30 pm – 6:30 pm	Presentation from participants	0 0
1:30 pm – 3:30 pm	CONUSS	Wolfgang Sturhahn	6:30 pm	Dinner	
3:45 pm – 6:30 pm	Contraction Contraction	Wolfgang Sturbahn	Sunday Nov 19		
6:30 pm	Dinner	Wongang Stuffiann	<u>Sunday, NOV. 15</u>		
			Morning session		
<u>Friday, Nov. 17</u>			8:30 am 9:00 am – 10:30 pm 10:30 am – 10:45 am	Breakfast CONUSS Coffee break	Wolfgang Sturhahn
Morning session			10:45 am – 11:45 am 11:45 am – 12:00 pm	CONUSS Open discussion: experimental issues and	Wolfgang Sturhahn
8:30 am	Breakfast		12 [.] 00 pm	data analysis	
9:00 am – 10:00 am	Introduction to Mössbauer spectroscopy – part II	Raphael Hermann	12.00 pm	lunch	
10:00 am – 10:15 am	Coffee break				
10:15 am – 11:15 am	Studies of magnetism using synchrotron Mössbauer Spectroscopy	Ralf Röhlsberger (DESY)			
11:15 am – 12:30 pm	CONUSS	Wolfgang Sturhahn			
12:30 pm	Lunch				

Afternoon session

1:30 pm – 2:00 pm	NFS of ¹¹⁹ Sn	Michael Hu (ANL)
2:00 pm – 3:50 pm	CONUSS	Wolfgang Sturhahn
3:50 pm – 4:05 pm	Coffee break	
4:05 pm – 6:30 pm	CONUSS	Wolfgang Sturhahn
6:30 pm	Dinner	

(Conducting Nuclear Resonant Scattering Experiment at 3ID, APS)

Jiyong Zhao

Advance Photon Source, Argonne National Laboratory

Workshop on Nuclear Resonant Scattering APS, November 16-19, 2017

To plan for an experiment of NRS

1. What can be measured?

SMS: hyperfine interactions, magnetic proporties NRIXS: thermal and dynamical properties

2. What's available at the beamline how strong the beam, how small the beam size, how low/high the temperature or field etc. what else?

3. How and when to apply the beam time

To plan for an experiment for NRS

1. What can be measured? NRIXS: thermal dynamics SMS: hyperfine interactions

2. What's available at the beamline

What are unique features of the SRS?How strong the beam?Do you need enriched or natural abundant sample?What is the beam size,What are the existing instruments at the beamline to reach low/high temperatures or fields etc.

3. How and when to apply the beam time

Nuclear resonance beamlines around the world, 2017

24-bunch mode, 4.25mA/bunch, 65%

324-bunch mode, 0.3 mA/bunch, 20%

Hybrid mode 1+8X7-bunch, 15%

1296 buckets, 2.84 nsec separation

APS storage ring filling pattern

Timing technique to select NRS delayed signal from a strong electronic scattering background

Timing technique

4 stations: A-B-C-D at 3ID, APS

X-ray Source and Instruments for NRS

- 1. SR Source (undulator)
- 2. Monochromator (HHLM, HRM)
- 3. Focusing (KB, toroidal mirror, CRL)
- 4. Environments (HT, HP, LT, E/M-field)

Setup for a synchrotron radiation nuclear resonant scattering experiment

Synchrotron radiation at the Advanced Photon Source:

At 3ID, there are two 2.4 m long undulators, with 2.7 cm period

Setup for a synchrotron radiation nuclear resonant scattering experiment

ID-A: High heat-load monochromator

Kohzu high-heat-load monochromator consists of two cryogenic cooled silicon

Setup for a synchrotron radiation nuclear resonant scattering experiment

E (meV)

High-energy resolution monochromator (HRM)

Resolution function HRM for 83Kr

3ID-B: High energy-resolution monochromator and focusing optics

Generations of high-resolution monochromators

HRM at Sector 3

⁵⁷Fe, 14.4 keV,
¹⁵¹Eu, 21.541 keV,
¹¹⁹Sn, 23.880 keV,
¹⁶¹Dy, 25.651 keV,
⁸³Kr, 9.404 keV,

HRM: 1/0.8/2.3/5 meV HRM: 0.8 meV HRM: 0.85/0.14 meV HRM: 0.5 meV HRM: 2.3/1.0 meV

Nuclear data for Mössbauer isotopes

Isotope	Energy	Life time	Energy width	Natural	Internal conv.	Cross section $-$ (am ² 10-18)	Recoil energy	Туре
	E(KeV)	$t_{1/2}(ns)$	1 (nev)	abundance(%)	coefficient a	$\sigma_0(\text{cm}^2 \ 10^{-10})$	$E_{R}(mev)$	
¹⁸¹ Ta	6.22	6800	0.067	99.99	46	1.6	0.116	E1
¹⁶⁹ Tm	8.41	3.9	1.17	100	268	0.31	0.24	M1
⁸³ Kr	9.40	147	3.1	11.5	19.9	1.1	0.56	M1
⁷³ Ge	13.26	4 10 ³	0.11	7.8	1000	0.0076	1.29	E2
⁵⁷ Fe	14.41	97.8	4.7	2.15	8.21	2.57	1.95	M1
¹⁵¹ Eu	21.53	9.7	0.47	47.9	28.6	0.23	1.66	M1
¹⁴⁹ Sm	22.49	7.1	0.641	13.9	50	0.0711	1.82	M1
¹¹⁹ Sn	23.88	17.7	0.257	8.6	5.12	1.40	2.58	M1
¹⁶¹ Dy	25.65	28.1	0.162	19.0	2.9	0.95	2.2	E1
⁴⁰ K	29.56	4.26	1.07	0.012	6.6	1.6	11.6	M1

Setup for a synchrotron radiation nuclear resonant scattering experiment

NRIXS

Unique capability at 3ID for NRS

Beam focusing at 3ID-B

K-B focusing mirror

Beam size: $6 \mu m \times 7 \mu m$ Acceptance: 0.4mm x 0.6 mm

Beam size: 18 μm x 12 μm Acceptance: 0.4mm x 1.8 mm

Sample environment for NRS at 3ID

Low temperature, flow cryostat

High pressure and high temperature

High pressure and low temperature

Sector 3-ID offline high pressure instruments

- Started the HP experiment at Sector 3 in 2000.
 Developed many on-line and off-line capabilities of HP at HT/LT/HF and etc.
- ~50% beamtime allocated for high pressure experiments,
- 20 independent user groups in the past year,
- **37** publications in the past 5 years.
- Currently there are
 - DACs:
 - panoramic DACs of various designs
 - symmetric DACs
 - nonmagnetic mini-DACs
 - gas loading gearboxes/adapters for special DACs
 - EDM for non-Be gasket drilling
 - microscopes
 - Ruby/Raman system
 - glovebox with built-in microscope for high pressure sample loading
 - Mössbauer lab capable of taking high pressure data in DAC

Experimental Setup for Nuclear Resonant Inelastic X-ray Scattering under low temperature

Unique capability at 3ID: HP/HT for NRS

NRIXS-SMS and diffraction

In situ X-ray diffraction, NRIXS, and SMS studies in a LHDAC provide structural (density), magnetic, elastic, vibrational, and thermodynamic information of the sample. This is also a powerful tool to detect melting.

NRS at HPHT setup

<- Hotspot

NRIXS ->

<- SMS

Example sample loading->

NRIXS at High-P Low-T

Design of a miniature panoramic diamond anvil cell (DAC).

Active user programs at 3ID, APS with the following unique capabilities

- 1. A low temperature (4K) and high magnetic field (9T) and high pressure system for NFS. (since 2007)
- 2. A laser heated diamond anvil cell system (since 2002)
- 3. An In-situ diffraction system (since 2008)
- 4. An on-line Ruby system (since 2011)
- 5. Dynamic pressure adjusting system

(gear box and gas-driven membrane cell). (since 2011)

6. Low temperature (9K) and high pressure (Mbar) system for NRIXS.

Mössbauer Spectroscopy Laboratory of 3-ID beamline

Room Temperature/high pressure set-up

Low temperature (4.2 K) set-up

Available radioactive sources: ⁵⁷Co for iron, ^{119m}Sn for tin,

¹⁵¹SmO2 for europium, and ^{121m}Sn for antimony

Current users:

Arizona State U. **Argonne Chemical Sciences** Univ. of Chicago University of Illinois, Urbana Yale University Michigan State University University of Wisconsin University of Connecticut Carnegie Institute University of Lyon Caltech Princeton U. MIT Carnegie Mellon University Yale U. Michigan State U. Northwestern U

The HERIX spectrometers @ the APS

Synchrotron Mössbauer Spectroscopy with a high-speed shutter

Demonstration setup

1 kHz repetition-rate shutter

•Closed shutter – detector shielded from enormous electronic charge scattering (10¹³⁻ ¹⁴ ph/s)

•Opens quickly (10-8 s) to allow detection of nuclear resonant scattering (10² ph/s demonstrated, but improved shutter with higher rep. rate will allow 10⁵ ph/s)

•Open shutter – allows detection of nuclear resonant scattering with 100% transmission, but also opens the door for unwanted spurious bunches emanating from the storage ring (10⁰⁻² ph/s)

© Data taken at 14-ID of APS (BioCARS)

Toellner, et al., JSR (2011) 18, 183-188.

Thomas S. Toellner toellner@anl.gov

35

To use the facility at 3ID, APS Nine months of running, in three periods - T1-period, Feb~Apr; - T2-period, Jun~Aug; – T3-period, Oct-Dec. Two type of proposals - GUP (General User Proposal) effective for two years – PUP (Partner User Proposal): Jointly developing new capability for the beamline,

with guaranteed beam time each run

To become a user at 3ID

Plan ahead

Talk to the beamline scientists - (Sample preparation, expectation, instruments ...) Apply through either - GUP (General User Proposal) or PUP (Partner User Proposal) Deadline: 2018-1, Oct-28-2017 2018-2, Mar-2-2018 2018-3, Jul-6-2018

Thank you for your attention and See you at the beamline!