

Introduction to isotope fractionation and SciPhon

Nicolas Dauphas

dauphas@uchicago.edu

Origins Laboratory Department of the Geophysical Sciences and Enrico Fermi Institute The University of Chicago

Primer on isotopic fractionation

$$\delta^{56} \text{Fe} = \left[\frac{\left({}^{56} \text{Fe} / {}^{54} \text{Fe} \right)_{\text{sample}}}{\left({}^{56} \text{Fe} / {}^{54} \text{Fe} \right)_{\text{standard}}} - 1 \right] \times 1000$$

 δ^{56} Fe is the deviation in part permil of the 56 Fe/ 54 Fe ratio of a sample relative to that of some reference material

Example: 15.6994 *vs*. 15.6979 =0.1‰ fractionation

Dauphas & Rouxel (2006) Mass spectrometry and natural variations of iron isotopes. Mass Spectrom. Rev. 25, 515-550.

Oxygen and Iron Isotope Studies of Magnetite Produced by Magnetotactic Bacteria

Kevin W. Mandernack,^{1*} Dennis A. Bazylinski,² Wayne C. Shanks III,³ Thomas D. Bullen⁴

Mass-dependent and -independent signature of Fe isotopes in magnetotactic bacteria

Matthieu Amor,^{1,2*} Vincent Busigny,^{1*} Pascale Louvat,¹ Alexandre Gélabert,¹ Pierre Cartigny,¹ Mickaël Durand-Dubief,³ Georges Ona-Nguema,² Edouard Alphandéry,^{2,3} Imène Chebbi,³ François Guyot²

Science 2016

Secular Variation of Iron Isotopes in North Atlantic Deep Water

Xiang-Kun Zhu,* R. Keith O'Nions, Yueling Guo, Ben C. Reynolds

Natural Iron Isotope Variations in Human Blood

Thomas Walczyk^{1*} and Friedhelm von Blanckenburg²†

I BODY	୍ କୁ କୁକ୍ଳୁକ୍ଳ ୦ ପ୍ରତ୍ର ୦ ପ୍ରତ୍ର	blood (females) blood (males) blood (infants) blood (children)
HUMAN	0 00 00 00 00 00 00 0 0	liver muscle hair feces
ANIMAL PRODUCTS		beef muscle chicken muscle whole chicken egg pork muscle veal liver shrimp muscle tuna muscle
PLANT FOODS		wheat rye rice lentils green beans soy beans peas spinach
-4	-3 -2 -1 ()
	$\delta^{ ext{ iny 56}}Fe$ (‰)	

Iron Isotope Fractionation and the Oxygen Fugacity of the Mantle

Helen M. Williams,¹* Catherine A. McCammon,² Anne H. Peslier,³ Alex N. Halliday,¹ Nadya Teutsch,¹ Sylvain Levasseur,¹ Jean-Pierre Burg¹

Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake

MgO (wt%)

Fang-Zhen Teng, $^{1\ast}\dagger$ Nicolas Dauphas, 1 Rosalind T. Helz^{2}

Equilibrium Iron Isotope Fractionation at Core-Mantle Boundary Conditions

Veniamin B. Polyakov

Quantification of dissolved iron sources to the North Atlantic Ocean

Tim M. Conway¹[†] & Seth G. John¹

Nature 2014

Science 2016

Pressure-dependent isotopic composition of iron alloys

A. Shahar,¹* E. A. Schauble,² R. Caracas,³ A. E. Gleason,⁴ M. M. Reagan,⁵ Y. Xiao,⁶ J. Shu,¹ W. Mao⁵

Nature Communications 2016 Liu et al. (in revision)

Evaporation (Poitrasson *et al.* 04)

Mantle melting (Williams *et al.* 05, Weyer & Ionov 07, Dauphas *et al.* 09)

Metal-silicate partitioning (Polyakov 09) **Equilibrium isotopic fractionation**

How do iron isotopes partition between coexisting phases at equilibrium?

Equilibrium isotopic fractionation

FeX vs. Fe_g

$$\begin{split} ^{56}\mathrm{Fe}_{g} + ^{54}\mathrm{FeX} \rightleftharpoons ^{54}\mathrm{Fe}_{g} + ^{56}\mathrm{FeX} \\ \mathrm{K}_{eq} = \frac{\begin{bmatrix} 5^{4}\mathrm{Fe}_{g} \end{bmatrix} \begin{bmatrix} 5^{6}\mathrm{FeX} \end{bmatrix}}{\begin{bmatrix} 5^{6}\mathrm{FeX} \end{bmatrix}} = \frac{\begin{bmatrix} 5^{6}\mathrm{FeX} \end{bmatrix} / \begin{bmatrix} 5^{4}\mathrm{FeX} \end{bmatrix}}{\begin{bmatrix} 5^{6}\mathrm{FeX} \end{bmatrix}} = \frac{\begin{pmatrix} 5^{6}\mathrm{Fe} / 5^{4}\mathrm{Fe} \end{pmatrix}_{\mathrm{FeX}}}{\begin{pmatrix} 5^{6}\mathrm{Fe} / 5^{4}\mathrm{Fe} \end{pmatrix}_{\mathrm{FeX}}} \\ \frac{5^{6}\mathrm{Fe}_{g} \end{bmatrix} \begin{bmatrix} 5^{4}\mathrm{FeX} \end{bmatrix}}{\begin{bmatrix} 5^{6}\mathrm{FeX} \end{bmatrix}} = \frac{\begin{bmatrix} -\Delta_{R}G}{RT}}{\begin{pmatrix} 5^{6}\mathrm{Fe} / 5^{4}\mathrm{Fe} \end{pmatrix}_{\mathrm{FeX}}} \\ \mathrm{K}_{eq} = e^{\frac{-\Delta_{R}G}{RT}} \\ \mathrm{K}_{eq} = e^{\frac{-\Delta_{R}}{RT}} \\ \mathrm{F} = -RT\ln\left(Q_{\mathrm{trans}} \times Q_{\mathrm{rot}} \times Q_{\mathrm{vib}}\right) \\ \mathrm{K}_{eq} = e^{\sum_{\mathrm{products}}(Q_{\mathrm{trans}} \times Q_{\mathrm{rot}} \times Q_{\mathrm{vib}}) - \sum_{\mathrm{reactants}}(Q_{\mathrm{trans}} \times Q_{\mathrm{rot}} \times Q_{\mathrm{vib}})} \\ \mathrm{K}_{eq} = \frac{\prod_{\mathrm{products}} Q_{\mathrm{trans}} \times Q_{\mathrm{rot}} \times Q_{\mathrm{vib}}}{\prod_{\mathrm{reactants}} Q_{\mathrm{trans}} \times Q_{\mathrm{rot}} \times Q_{\mathrm{vib}}} \end{split}$$

Urey (1947); Bigeleisen and Mayer (1947)

Equilibrium isotopic fractionation

$$Q_{\text{vib},i} = \frac{e^{-\frac{hv_i}{2kT}}}{1 - e^{-\frac{hv_i}{kT}}}$$

$$K_{eq} = \prod_{i} \frac{u_{i}'}{u_{i}} \frac{e^{-u_{i}'/2}}{1 - e^{-u_{i}'}} \frac{1 - e^{-u_{i}}}{e^{-u_{i}/2}}$$
$$u_{i} = \frac{hv_{i}}{kT}$$

Equilibrium isotopic fractionation between a chemical compound and monoatomic gas is called the reduced partition function ratio and can be calculated from the vibration energies of the isotopic species

Reduced partition function ratio = β

Urey (1947); Bigeleisen and Mayer (1947)

Sturhahn *et al.* 95 Seto *et al.* 95

Ratio of the masses of the isotopes involved (e.g., 56/54)

Iron partial phonon density of states (PDOS)

$$\ln \beta_{I/I^*} = \frac{3}{2} \left(\frac{M}{M^*} - 1 \right) \int_0^{E_{\max}} \left(\frac{E}{2kT} + \frac{E/kT}{e^{E/kT} - 1} - 1 \right) g(E) dE$$

Temperature at which one wants to calculate $\boldsymbol{\beta}$

Polyakov et al. (2005) Dauphas et al. (2012)

Mass-dependent fractionation

$$\ln \beta_{I/I^*} = \frac{3}{2} \left(\frac{M}{M^*} - 1 \right) \int_0^{E_{\max}} \left(\frac{E}{2kT} + \frac{E/kT}{e^{E/kT} - 1} - 1 \right) g(E) \, dE$$

To a very good approximation:

$$1000 \ln \beta_{I/I^*} \simeq 1000 \left(\frac{M}{M^*} - 1\right) \left(\frac{m_2^g}{8k^2T^2} - \frac{m_4^g}{480k^4T^4} + \frac{m_6^g}{20,160k^6T^6}\right)$$

with

$$(m_j^g) = \int_0^{E_{\max}} E^j g(E) \, dE$$

jth moment of g

Polyakov (2009) Dauphas et al. (2012)

$$1000 \times \ln \beta_{I/I^*} \simeq 1000 \left(\frac{M}{M^*} - 1\right) \left(\frac{m_2^g}{8k^2 T^2} - \frac{m_4^g}{480k^4 T^4} + \frac{m_6^g}{20,160k^6 T^6}\right)$$

Dauphas et al. (2012) and Hu et al. (2013) established relationships between the moments of S and g

High temperature approximation

The sum rules of Lipkin (1995, 1999) identify the first terms with the mean force constant of iron bonds

$$1000 \times \ln \beta_{I/I^*} = 1000 \left(\frac{1}{M^*} - \frac{1}{M}\right) \frac{\hbar^2}{8k^2 T^2} \langle F \rangle$$

$$\langle F \rangle = \frac{M}{\hbar^2} \int_0^{+\infty} E^2 g(E) dE = \frac{M}{E_R \hbar^2} \int_{-\infty}^{+\infty} (E - E_R)^3 S(E) dE$$

... a familiar formula in isotope geochemistry (Herzfeld and Teller, 1938; Bigeleisen and Mayer, 1947)

High temperature approximation

A good approximation for iron

δ⁵⁶Fe ~0 ‰

Why does Earth's crust have different iron isotopic composition than the mantle, other planetary crusts, and chondrites?

Dauphas et al. (2014)

Redox and structural controls in glasses

7113.6 7113.4 Centroid energy (eV) 7113.2 7113.0 7112.8 Basalt 7112.6 Andesite 7112.4 ▲ Dacite 7112.2 ♦ Rhyolite 7112.0 0.5 0 Fe³⁺/(Fe²⁺+Fe³⁺)

Cottrell et al. 09, Dauphas et al. (2014)

XANES

Difficulties with force constant measurements

 $\langle F \rangle \propto R_3^S$

Difficulties with force constant

measurements

 $\langle F \rangle \propto m_2^g$

A word of caution with published data

Equilibrium Iron Isotope Fractionation at Core-Mantle Boundary Conditions

Veniamin B. Polyakov

13 FEBRUARY 2009 VOL 323 SCIENCE www.sciencemag.org

No baseline subtraction

<F> = 968±128 N/m

Baseline subtraction with SciPhon

 $<F> = 213 \pm 36 \text{ N/m}$

Baseline subtraction

Improves the session-to-session long term reproducibility

Error propagation in derived quantities

- Counting statistics
- Parameters of the baseline $(a \pm \sigma a)x + (b \pm \sigma b)$
- Zero energy bin
- Energy scaling
- Bin-to-bin energy variations

Hu et al. (2013); Dauphas et al. (2014)

- 1. Have a GUI interface
- 1. Streamline the baseline subtraction procedure
- 1. Propagate sources of uncertainties other than counting statistics
- 2. Output quantities directly usable in isotope geochemistry

Select a Mossbauer isotope (57Fe default choice)

• • •	SciPhon	n 1.0
Select isotope: 1. Load d 2. Load reso 3. Deconvolve res Background subtract Experiment temperat 4. Okay-proc	Fe-57 Sn-119 Eu-151 Dy-161 Kr-83 solution from data ion (cts): 0 ure in K: 300 eed	5. Elastic peak removal 6. Energy truncation/baseline definition 7. Temperature calculation 8. Calculate DOS 9. Calculate sound velocities 10. Calc. Parameters 11. Export Abort/New session References
Graphics output:	123	3 4

Load a ".dat" file (you need padd from Phoenix to make such a file)

	SciPhon 1.	0			
		5. Elastic peak rem	oval		
Select iso	Select isotope: Fe-57		ne definition		
1. Lo	ad data file	7. Temperature calcu	lation		
		7. Temperature calculation			
2. Load	resolution file	8. Calculate DOS 9. Calculate sound velocities			
3 Deconvolv	ve resolution from data				
J. Deconvol		10. Calc. Parameters	11. Export		
Background si	(btraction (cts); 0				
Experiment to	moratura in Ki 200	Abort/New session	'n		
Experiment ter		References			
	Select the data	a file			
	Goethite Feb2014	4 testp O Se			
	Name	Date Modified	Size		
	Goethite 2 etaysTing	Today, 7:35 AM	6 KB		
	Goethite 2Graph ipg	Today, 7:35 AM	13 KB J		
iCloud Drive	Goethite_2Graph.jpg	Today, 7:35 AM	7 KB J		
😭 dauphasu	Goethite_2Graph.jpg	Today, 7:35 AM	16 KB J		
UTh PT gaussian	Goethite_2onDOS.txt	Today, 7:35 AM	31 KB t		
	Goethite_2nDOS.xlsx	Today, 7:35 AM	26 KB S		
Applications	Goethite_2iPhonS.txt	Today, 7:35 AM	86 KB t		
Documents	Goethite_2honS.xlsx	Today, 7:35 AM	64 KB S		
Movies	Goethite_2mmary.txt	Today, 7:35 AM	3 KB t		
	Goethite_2mary.xlsx	Today, 7:35 AM	5 KB - S		
	le old	Yesterday, 10:29 AM	F		
Pictures	StyleBox["_",	Yesterday, 10:22 AM	6 KB J		
🗋 dauphas#1498.ppt	Goethite_2aryN.xlsx	Yesterday, 10:22 AM	5 KB 5		
	Goethite_2nvolved.txt	Yesterday, 10:19 AM	45 KB t		
Jevices	Goethite 2014 res	Feb 12, 2014, 5:34 PM	39 KB 3		
_ Firefox ≜	Goethite 2014 dat	Feb 12, 2014, 5:33 PM	49 KB		
Remote Disc		105 12, 2011, 0.001 1	10110		
· · ·					
E	Enable: Data file	\$			
Options					
		C	ancel Open		
		0	opon		

SciPhon 1.	.0							
Select isotope: Fe-57 1. Load data file * /Jsers/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 * /Jsers/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014. * 2. Load resolution file * 3. Deconvolve resolution from data * Background subtraction (cts): 0 Experiment temperature in K: 300	5. Elastic peak removal 6. Energy truncation/baseline de 7. Temperature calculatio 8. Calculate DOS 9. Calculate sound velociti 10. Calc. Parameters 11. E Abort/New session	efinition In ies Export		Select the resolution	on file			
4. Okay-proceed	References			Goethite_Feb2014	testp ≎	Q Search		
Graphics output:		Favorites All My Files iCloud Drive idauphasu UTh_PT_gaussian Applications Documents Movies Music Pictures dauphas#1498.ppt Devices Firefox Firefox Firefox	Name	Goethite_2etavsT.jpg Goethite_2Graph.jpg Goethite_2Graph.jpg Goethite_2Graph.jpg Goethite_2onDOS.txt Goethite_2nDOS.xlsx Goethite_2iPhonS.txt Goethite_2mary.txt Goethite_2mary.txt Goethite_2mary.xlsx Goethite_2nvolved.txt Goethite_2nvolved.txt Goethite_2olved.xlsx Goethite_2014.res Goethite_2014.dat	Date Modified Today, 7:35 AM Yesterday, 10:29 AM Yesterday, 10:22 AM Yesterday, 10:22 AM Yesterday, 10:22 AM Yesterday, 10:19 AM Yesterday, 10:19 AM Feb 12, 2014, 5:33 PM		Size 6 KB 13 KB 7 KB 16 KB 31 KB 26 KB 86 KB 64 KB 3 KB 5 KB 45 KB 39 KB 49 KB 49 KB	Kinc JPE JPE JPE text Spre text Spre Fold JPE Spre text Spre Kinc Mic
		Options	Enable: F	Resolution file	``	Cancel	Оре	n

Deconvolution of the resolution from the data using the steepest descent algorithm

Deconvolution

Deconvolution

In the steepest descent algorithm, the restoration vector is manipulated so as to only return positive values and reduce oscillations (Ichioka et al., 1981)

Noise amplification can be limited by terminating the algorithm after a finite number of iterations

Input the experiment temperature and background

	5. Elastic peak removal		
1. Load data file	6. Energy truncation/baseline definition		
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculation		
2. Load resolution file	8. Calculate DOS		
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.res	9. Calculate sound velocities		
3. Deconvolve resolution from data	10. Calc. Parameters 11. Export		
Background subtraction (cts): 0 Experiment temperature in K: 300 4. Okay-proceed	Abort/New session References		
Graphics output:			

Detailed balance

The phonon annihilation part is used. It added to the phonon creation part by applying the proper weights and using the experimental temperature

Elastic peak removal

No peak deconvolution

Elastic peak removal

10 iterations

Elastic peak removal

1000 iterations

Truncation and baseline definition

Truncation and baseline definition

Temperature determination

DOS calculation

SciPhon 1	.0
Select isotope: Fe-57	5. Elastic peak removal
1. Load data file	6. Energy truncation/baseline definition
Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculation
2. Load resolution file	8. Calculate DOS
Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.res	9. Calculate sound velocities
3. Deconvolve resolution from data	10. Calc. Parameters 11. Export
Background subtraction (cts): 0 Experiment temperature in K: 300 4. Okay-proceed	Abort/New session References
a(E) DOS (1/meV)	
0.05 0.04 0.03 0.02	

Extrapolation beyond the truncation range using the DOS

SciPhon 1.0)
Select isotope: Fe-57 +	5. Elastic peak removal
1. Load data file	6. Energy truncation/baseline definition
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculation
2. Load resolution file	8. Calculate DOS
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.res	9. Calculate sound velocities
3. Deconvolve resolution from data	10. Calc. Parameters 11. Export
Background subtraction (cts): 0 Experiment temperature in K: 300	Abort/New session
4. Okay-proceed	References
 S after extrapolation beyond trunca S after full data reduction without ex S(E) (1/eV) 10⁻⁴ 10⁻⁷ 	tion range using PDOS xtrapolation
-200 -100	100 200 E (meV)

Calculate sound velocities

Select isotops: Fe-57 1. Load data file 1. Load data file 1. Cade: Selections: Selection: Selecti	SciPhon 1.0		
Select lastops: Fe-57 ÷ 1. Load data file Alerer, dauphaeu, Desktop,NHSS, dat, res_files, Oothes, Feb2014 2. Load resolution file 2. Load resolution file 3. Deconvolve resolution file 3. Deconvolve resolution file 3. Deconvolve resolution file 3. Deconvolve resolution file 4. Okay-proceed 3. Deconvolve resolution file 4. Okay-proceed 3. Seconvolve resolution file 4. Okay-proceed 3. Seconvolve resolution file 4. Okay-proceed 5. Safer entrapolation beyond humanic outproperiod 5. Safer entrapolation to beyond humanic outproperiod 5. Safer entrapolation to beyond humanic outproperiod 5. Safer entrapolation without extrapolation 5. Safer entrapolation without extrapolation 5. Safer entrapolation without extrapolation 5. Safer ful data modulon ful data modulon ful data ful data modulon ful data			
 1. Load data file Observed data file<td>Select isotope: Fe-57</td><td>5. Elastic peak removal</td><td>Density p of the material in g/cm^3</td>	Select isotope: Fe-57	5. Elastic peak removal	Density p of the material in g/cm^3
Ubers/dauphasubeaktop/RNRS/stat_reg_files/Geathite_Fele2014 2. Load resolution file 2. Load resolution file 3. Deconvolve resolution from data Background subtraction (rds): 3. Deconvolve resolution from data Abort/New session 4. Okay-proceed Carephies output: 12 2 4 Set resolution without extrapolation subgradiation Set (1/w) Set for full data reduction without extrapolation Set (1/w) Set for full data reduction without extrapolation Set (1/w) Set for full data reduction without extrapolation Set (1/w) Set (1/w)<	1. Load data file	6. Energy truncation/baseline definition	4.27
 2. Load resolution file 3. Deconvolve resolution from data 9. Calculate DOS 9. Calculate sound velocities 10. Calc. Parameters 11. Export 11. Export 11. Export 11. Export 12. Solution from data 12. Solution from data 13. Export 14. Okay-proceed 12. Solution from outing PDOS 15. Solution for full data reduction without extrapolation 11. Export 12. Solution from outing PDOS 13. Solution for full data reduction without extrapolation 14. Okay-proceed 15. Uncertainty (85 % c)) on K in GPa 16. Solution for the Debye velocity by dragging the locators. Then click Proceed. 12. Solution for the Debye velocity by dragging the locators. Then click Proceed. 14. Okay-proceed 15. Uncertainty (85 % c) on K in GPa 16. Solution for the Debye velocity by dragging the locators. Then click Proceed. 16. Solution for the Debye velocity by dragging the locators. Then click Proceed. 16. Solution for the Debye velocity by dragging the locators. Then click Proceed. 17. Solution for the Debye velocity by dragging the locators. Then click Proceed. 18. Calculate and should not be used in the fit. 19. Solution for the Debye velocity by dragging the locators. Then click Proceed. 19. Solution for the Debye velocity by dragging the locators. Then click Proceed. 19. Solution for the Debye velocit	/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculation	Uncertainty (95 % ci) on $ ho$ in g/cm^3
Ubsets outputs 9. Calculate sound velocities Background subtraction (cts): 0 4. Okay-proceed 10. Calc. Parameters 11. Export Background subtraction (cts): 0 4. Okay-proceed 12. Calculate sound velocities 0 Stansport	2. Load resolution file	8. Calculate DOS	
 3. Deconvolve resolution from data 10. Calc. Parameters 11. Export Background subtraction (dst): Chort, New session References 	/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.res	9. Calculate sound velocities	U Bulk modulus K of the material in GPa
Background subtraction (citis: 0 4. Okay-proceed Creptice output:	3. Deconvolve resolution from data	10. Calc. Parameters 11. Export	
References output: Craphics output:	Background subtraction (cts): 0	Abort/New session	Uncertainty (95 % ci) on K in GPa
Graphics output	4. Okay-proceed	References	0
 c aprine strapilité de la reduction vitiou textrapolation S after extrapolation beyond truncation range using PDOS S after full data reduction without extrapolation S(E) (1/eV) S(E)	Graphics output:		Set range for calculation of the Debye velocity by dragging the locators. Then click Proceed.
1 2 3 4 • S after extrapolation beyond truncation range using PDOS • S after full data reduction without extrapolation S(E) (1/eV) $\int_{-200}^{0} \int_{-100}^{0} \int_{0}^{0} \int_{0}^{0} f_{meV}$ S(E) (1/eV) $\int_{-200}^{0} \int_{-100}^{0} \int_{0}^{0} f_{meV}$ $\int_{-200}^{0} \int_{-100}^{0} f_{meV}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0} f_{meV}$			The points below the vertical black line are not data and should not be used in the fit.
$ S = S = extrapolation beyond truncation range using PDOS S = the full data reduction without extrapolation S(F) = (1^{OV}) + (1^{OV}) $	1 2 3 4]	
- S after extrapolation beyond truncation range using PDOS - S after full data reduction without extrapolation $S(E) (1/eV)$ $\int ($			0
• S after full data reduction without extrapolation S(E) (1/eV) $\int 0^{-1} $	 S after extrapolation beyond trunca 	tion range using PDOS	Vd Vp Vs
$S(E) (1/eV)$ $= 43 - 30 - 43$ $g(E)/E^{2} (meV^{A-3})$ 0.00020 0.00010 0.00005 $E (meV)$	S after full data reduction without e	xtrapolation	3790 6384 3392
	S(E) (1/eV)		45 30 45 g(E)/E^2 (meV^-3)
			0.00020
	10-4		
$\begin{array}{c} & & & & & & & \\ & & & & & & \\ & & & & $			0.00015 -
10^{-10} 10^{-10} -200 -100 100 200 E (meV) 5 10 15 E (meV)	10-7		
10^{-10} -200 -100 100 200 E (meV) 5 10 15 E (meV)			0.00010
	·. 10 ⁻¹⁰		and a second and a second a se
-200 -100 100 200 E (meV)			0.00005 -
	E (meV)		5 10 15
	200 100	200	
Proceed			Proceed

Calculated parameters

SciPhon 1.0					
		SciPhon v.1.0, Nicolas Dauphas, November 3, 2014			
		/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat			
Select isotope: Fe-57	5. Elastic peak remova	Thu 6 Nov 2014 13:21:43			
		Total energy range:	-129.736	to	170.204
1. Load data file	6. Energy truncation/baseline	Energy cutoff (left and right in meV):	30.4	and	45.8
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014		Baseline subtracted:	linear _0.00127468	1	0 000586293
testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculat	a= b=	0.633789	±	0.0794962
2 Load resolution file	R. Calaulata DOS				
	o. Calculate DOS	Input temperature (K):	300		
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014	9. Calculate sound veloc	Temperature from detailed balance (K):	298.329		
testpoubene_Nov2014/Goethite_2014.res	5. Odiodiate Sound Veloc	lamb-mossbauer factor from S:	0.757623	±	0.00197832
3. Deconvolve resolution from data	10 Calc Parameters 11	Mean square displacement <z^2> from S (A^2):</z^2>	0.00520933	±	0.0000449203
		Internal energy/atom from S (meV):	28.9909	±	0.670091
Background subtraction (cts): 0		Force constant from S (N/m):	267.705	±	12.5568
Sackyround aubiraction (cts).	Abort/New session	beta-value coefficients from S			
Experiment temperature in K: 300		1000 ln beta 56Fe/54Fe=A1/T^2+A2/T^4+A3/T6 (T in K)			
	References	A1:	763 881.	±	35830.3
4. Okay-proceed		A2:	-5.49249×10 ⁻⁵	±	6.76533×10°
		A3: 1000 lp beta 565e/545e-B1-/5-/72-B2-/5-/02/7/4 (T ip K)	1.11482×10'*	±	2.4666×10 ¹⁰
Graphics output:		B1:	2853.45		
		B2:	59838.3		
1 2 3 4		From g	0.757007		
	·	lamb-mossbauer factor from g:	0.757387		
		$d < z^2 > /dT (A^2/K)$:	0.0000158783		
		Critical temperature (K):	1181.97		
1000 ln <i>B</i>		Resilience (N/m):	86.9518		
·····		Internal energy/atom from g (meV): Kinetic energy/atom from g (meV):	29.7423		
		Vibrational entropy (kb/atom):	1.03736		
9 -		Helmholtz free energy (meV):	2.92432		
		Vibrational specific heat (kb/atom):	0.882528		
		lamb-mossbauer factor at T=0 from g: Kinetic energy/atom at T=0 from g (meV):	7.71077		
		Force constant from g (N/m):	266.532		
		beta-value coefficients from g			
7		1000 In beta 56Fe/54Fe=A1/T^2+A2/T^4+A3/T6 (T in K) A1	760 534		
		A2:	5 45667 - 109		
6		A3-	1 1304 - 1014		
		Velocities from g	1.1304 X 10		
	т (К)	Input density (g/cc):	4.27	±	0.
20 40 60	80 100	Input bulk modulus (GPa):	108.5	±	0.
		p-wave velocity (m/s):	6383.58	± +	29.9719
		s-wave velocity (m/s):	3391.93	±	43.0733
		Poisson ratio:	0.303296		

References

SciPhon 1.0					
Select isotope: Fe-57 +	5. Elastic peak removal				
1. Load data file	6. Energy truncation/baseline definition				
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.dat	7. Temperature calculation				
2. Load resolution file	8. Calculate DOS				
/Users/dauphasu/Desktop/NRIXS_dat_res_files/Goethite_Feb2014 testpoubelle_Nov2014/Goethite_2014.res	9. Calculate sound velocities				
3. Deconvolve resolution from data	10. Calc. Parameters 11. Export				
Experiment temperature in K: 300 4. Okay-proceed Graphics output:	References				
SciPhon:	SciPhon:				
Dauphas N., Roskosz M., Alp E.E., Neuville D	Daunhas N. Boskosz M. Alo F.F. Neuville D.B. Hu M.Y. Sio C.K. Tissot F.L.H. Zhao J. Tissandier I. Medard F. Cordier C. (2014)				
Magma redox and structural controls on iron	Magma redox and structural controls on iron isotope variations in Earth's mantle and crust. Earth and Planetary Science Letters 398, 127-140.				
Application of NRIXS moments to isotope geo Hu M.Y., Toeliner T.S., Dauphas N., Alp E.E.,	Application of NRIXS moments to isotope geochemistry: Hu M.Y., Toellner T.S., Dauphas N., Alp E.E., Zhao J. (2013)				
Moments in nuclear resonant inelastic x-ray s	Moments in nuclear resonant inelastic x-ray scattering and their applications. Physical Review B 87, 064301.				
Dauphas N., Roskosz M., Alp E.E., Sio C.K.,	Dauphas N., Roskosz M., Alp E.E., Sio C.K., Tissot F.L.H., Hu M., Zhao J., Gao L., Morris R.V. (2012)				
A general moment NRIXS approach to the de	A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite. Geochimica et Cosmochimica Acta 94, 254-275.				
20 40 60	20 40 60 80 100 T (K)				

NRIXS is a powerful tool in isotope geochemistry

Beware of the baseline in NRIXS

Use SciPhon and give us some feedback

SciPhon development team: Nicolas Dauphas Michael Hu Erik Baker François Tissot Ercan Alp Justin Hu

<u>Collaborators</u>: Mathieu Roskosz Daniel Neuville Corliss Sio Jiyong Zhao Etienne Médard