Workshop on Nuclear Resonant Scattering and Data Analysis November 11 – 13, Advanced Photon Source

Studies of Thin-Film Magnetism Using Nuclear Resonant Scattering

Ralf Röhlsberger

Deutsches Elektronen-Synchrotron DESY, Hamburg

Outline

- 1. Hyperfine Interactions: Mössbauer nuclei as spectators of solid-state properties
- 2. Magnetic structure of thin films, multilayers and nanostripes
 - a. Spin structure of exchange-spring magnets
 - b. Domain-wall compression at magnetic interfaces
 - c. Twisted magnetic structures in multilayers
 - d. Magnetic order in nanostripe arrays
- 3. Magnetic dynamics in thin films and nanostructures
 - a. Superparamagnetic relaxation in nanoparticles
 - b. Spin precession at ferromagnetic resonance

Hyperfine Interactions

Electric hyperfine interaction

Magnetic hyperfine interaction

From: Brent Fultz, in: 'Characterization of Materials', Wiley 2012

Combined Hyperfine Interaction: Electric + Magnetic

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 11 - 13 Nov 2016 | Page 4

Diffraction as Method of Structure Determination

Nuclear Resonant Forward Scattering of Synchrotron Radiation

Pulsed broadband excitation of hyperfine-split nuclear levels

The 14.4 keV nuclear resonance of ⁵⁷Fe

$$τ_0 = 141 \text{ ns}, \Gamma_0 = 4.7 \text{ neV}$$

The beat pattern is a fingerprint of the magnetic structure of the sample:

Magnetic Hyperfine Interaction

Magnetic Hyperfine Interaction

Directional dependence

	Geometry	Nuclear Scattering Length	Time spectrum
		$\mathbf{N}(\omega)$	$\sigma \rightarrow \text{unpolarized}$
A	$\hat{\pi}$ \hat{k}_0 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} F_{+1} + F_{-1} & -i(F_{+1} - F_{-1}) \\ i(F_{+1} - F_{-1}) & F_{+1} + F_{-1} \end{array} \right)$	www
В	$\hat{\pi}$ \hat{k}_0 \hat{m} $\hat{\sigma}$	$rac{3}{16\pi}\left(egin{array}{cc} F_{+1}+F_{-1} & 0 \ 0 & 2F_0 \end{array} ight)$	
С	\hat{m} \hat{k}_0 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} 2F_{0} & 0 \\ 0 & F_{+1} + F_{-1} \end{array} \right)$	
D	$\hat{\pi}$ \hat{m}_1 \hat{k}_0 \hat{m}_2 $\hat{\sigma}$	$\frac{3}{16\pi} \left(\begin{array}{cc} F_{+1}+F_{-1} & 0 \\ 0 & F_{+1}+F_{-1} \end{array} \right)$	
E	π̂ λ ko ô	$f_{\sigma\sigma} = f_{\pi\pi} = \frac{3}{32\pi} \left(F_{+1} + F_{-1} + 2F_0 \right)$	hmmm
F		$\begin{split} f_{\sigma\sigma} &= \frac{3}{16\pi} \left(F_{+1} + F_{-1} \right) \\ f_{\pi\pi} &= \frac{3}{32\pi} \left(F_{+1} + F_{-1} + 2F_0 \right) \end{split}$	MMMMMM
G		$f_{\sigma\sigma} = f_{\pi\pi} = rac{1}{8\pi} \left(F_{+1} + F_{-1} + F_0 ight)$	MMMMM
			$t(\tau_0)$

From: Phys. Rev. B 67, 245412 (2003)

Electric Hyperfine Interaction

Directional dependence

From: R. Röhlsberger, Springer Tracts in Modern Physics, Vol. 208 (2005)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 11 – 13 Nov 2016 | Page 9

Temporal beats and magnetization direction

The temporal beat pattern sensitively depends on the orientation of the

Magnetization M

relative to the

Photon wavevector k₀

→ Use isotopic probe layers to investigate the depth dependence of magnetic properties

Permanent Magnets: Evolution of the Energy Product

Exchange hardening in nanostructured two-phase systems:

Hard phase with high coercivity

Soft phase with high magnetization

R. Skomski and J. Coey: PRB 48, 15812 (1993)

Exchange-Coupled Bilayers

The Spin Structure of Magnetic Bilayers

Fe on FePt

Soft – magnetic Fe

Hard – magnetic FePt with uniaxial anisotropy

- Exchange coupling at the interface: Parallel alignment of Fe and FePt moments
- With increasing distance from the interface: Coupling becomes weaker
- External field H induces spiral magnetization
- Return to parallel alignment for H = 0

Exchange-Spring magnets

Imaging the Internal Spin Structure of Exchange-Spring Magnets

Domain wall compression with increasing external field

Fe on FePt

Simulation of Exchange-Spring Layer Systems

E. Fullerton et al. PRB 58, 12193 (1998)

Divide the layer system into N sublayers of thickness d

Minimize the magnetic free energy

 $rac{\partial E}{\partial arphi_i} = 0$

Depth profiling of magnetic properties

Depth Dependence of the Oxide Phase

RR, H. Thomas, K. Schlage, T. Klein, J. Magn. Magn. Mater. 282, 329 (2004)

Exchange-Coupling of TbFe/GdFe Bilayers

TbFe, GdFe \rightarrow Amorphous alloys, produced by co-evaporation of the constituents at T = 77 K in an external field

Exchange constants: $|\mathbf{J}_{FeFe}| > |\mathbf{J}_{FeGd}| > |\mathbf{J}_{FeTb}| > |\mathbf{J}_{GdTb}|$

Gd₄₀Fe₆₀

Tb₁₂**Fe**₈₈

Soft ferrimagnetic alloys

Soft-magnetic at room temperature, hard-magnetic at low temperature

Adjusting the type of coupling via composition of the alloys

In collaboration with

S. Mangin, F. Montaigne, T. Hauet (Nancy) J. Juraszek, J. Teillet (Rouen)

Cooling the sample in an external field below T_B freezes the spin configuration in the TbFe layer

Sample rotation in the field induces a twisted magnetic state (planar domain wall)

Increase of the external field leads to domain wall compression

Insert Gd⁵⁷Fe probe layer to observe the compression (dark blue arrow)

Ralf Röhlsberger | Workshop on NRS and Data Analysis | APS/ANL, 11 – 13 Nov 2016 | Page 22

Magnetic Order in Fe/Cr multilayers

RKKY- oscillatory interlayer coupling

"There is no home like Iron-Chrome"

detected via nuclear resonant scattering of synchrotron radiation :

Half-order Bragg peaks due to magnetic superstructure

T. Toellner et al., PRL 74, 3475 (1995)

Fe/Cr multilayer exchange coupled to hard-magnetic FePt with unidirectional magnetic anisotropy

Twisted state stabilized by

- a) External field
- b) Intrinsic anisotropies, acting as an effective external field

External field increases the twist angle

The potential energy of the magnetic spring increases

System moves into state of lower energy by changing its chirality

Observation of Chirality Reversal

From vertical to horizontal (lateral) magnetic structures

Magnetic Superstructure in Arrays of Nano Wires

30 nm thick Permalloy (Ni₈₀⁵⁷Fe₂₀) nano stripes with pads prepared by electron beam lithography and lift off technique at the IAP (Liudmila Dzemiantsova, Lars Bocklage)

Magnetic Superstructure in Arrays of Nano Wires

30 nm thick Permalloy (Ni₈₀⁵⁷Fe₂₀) nano stripes with pads prepared by electron beam lithography and lift off technique at the IAP (Liudmila Dzemiantsova, Lars Bocklage)

ferromagnetic state

antiferromagnetic state

ferromagnetic state

- + successful preparation of perfectly antiparallel aligned nano stripes?!
- relatively large spacing of 500 nm in magnetic lattice, small sample

GISAXS on Permalloy Nano Stripes

Resonant GISAXS on Permalloy Nano Stripes

magnetic states of nano stripes:

ferromagnetic

antiferromagnetic

ferrimagnetic

Superstructure peaks indicate antiferromagnetic alignment.

Applicable to other periodic sample systems.

Determination of magnetic dynamics via nuclear resonant scattering

Probing Magnetic Relaxation: Fe₂O₃-oxide clusters in Cu

Magnetic moments are fluctuating with a rate much faster than $1/\tau_0$ sample appears nonmagnetic

$$\tau = \tau_0 \exp\left(\frac{KV}{k_B T}\right)$$

V = particle volume K = anisotropy constant

Magnetic Relaxation in Nanodots

Nuclear resonant scattering is very sensitive to magnetic dynamics

Fe nanoparticles on patterned diblock-copolymer films (Ph.D. thesis of Denise Erb (2015))

Nuclear Resonant Scattering for Magnonics

www.hitachigst.com

Spin excitations in magnetic microstructures

Goal: Excitation of uniform spin precession → Kittel mode at ferromagnetic resonance

Experimental Setup

(CUI Project C3.2)

Spin trajectory determination

L. Bocklage et al., Phys. Rev. Lett. 114, 147601 (2015)

Summary

- Nuclear resonant scattering to study to spin structure and spin dynamics
- Determination of magnetic relaxation rates and precession trajectories
- New approach to study magnetization dynamics
 - Depth profile of spin waves via thin isotopic probe layers
 - Non-equilibrium spin dynamics in strongly correlated systems

The Group 'Magnetism and Coherent Phenomena'

Andrey SiemensCornelius
StrohmKaiLarsRalf RöhlsbergerPavelLiudmilaJohann
HaberSchlageBocklageAlexeevDzemiantsovaJohann
HaberDenise ErbSvenja Willing
not on picture: Jakob Gollwitzer