Lattice Dynamics

J.S. Tse

Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada

$$
1
$$

The pitch of a note depends on the frequency of the source of the sound.

solids	$v(\mathrm{~m} / \mathrm{s})$	liquids	$v(\mathrm{~m} / \mathrm{s})$
aluminum	6420	alcohol, ethyl	1207
glass, pyrex	5640	argon	319
wood, maple	4110	water, distilled	1497

The acoustic velocity is related to the change in pressure and density of the substance

$$
v_{s}=\sqrt{\frac{d P}{d \rho}}=\sqrt{\frac{E}{\rho}} \quad \text { (Hooke's law) }
$$

Heat capacity is a measure of the amount of heat a material can store when the temperature is changed

	$C_{p}(\mathrm{~J} / \mathrm{mol} . \mathrm{K})$
Al	24.3
Fe	25.7
Ni	26.8
Cu	24.4
Pb	26.9
Ag	25.5
C	10.9
Water	75.3

$$
C_{p}=\frac{d U}{d T}
$$

Dulong-Petit law (1819) states that the gram-atomic heat capacity (specific heat times atomic weight) of an element is a constant; that is, it is the same for all solid elements.

Dynamics

determined by electronic structure
related to movement of atoms about their equilibrium positions

Electronic and Physical properties

- Sound velocity
- Thermal properties: -specific heat -thermal expansion -thermal conductivity
- Hardness of perfect single crystals
- Vibrations

0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0

$1 / a$

$1 / a$

$1 / a$

Phonon band structure

Phonon band structure of polyatomic systems

Phonon Dispersion of Diamond Measured by Inelastic X-Ray Scattering - Single crystal

Intensity (Hz)

Phonon dispersion of polycrystals

J. Baumert, C. Gutt, V. P. Shpakov, J. S. Tse, M. Krisch, M. Müller, H. Requardt, D. D. Klug, S. Janssen, and W. Press, Phys. Rev. B 68, 174301 (2003)

Hydrate pressure	MH-II 17 kbar	MH-III 21 kbar	MH-sI 0.2 kbar
$\rho\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	1.07 (Ref. 4$)$	1.16 (Ref. 4$)$	0.90
$B(\mathrm{GPa})$	14.4 (Ref. 18)	23.5 (Ref. 4$)$	8.0
$v_{p}(\mathrm{~km} / \mathrm{s})$	4.2 ± 0.1	4.6 ± 0.1	3.7
$C(\mathrm{GPa})$	18.9 ± 0.8	24.5 ± 1.0	12.3
$G(\mathrm{GPa})$	3.4 ± 0.6	0.8 ± 0.7	3.3
$v_{s}(\mathrm{~km} / \mathrm{s})$	1.8 ± 0.15	0.8 ± 0.4	1.9

J. Baumert, C. Gutt, M. Krisch, H. Requardt, 4 M. Müller, J. S. Tse, D. D. Klug, and W. Press, Phys. Rev., B 72, 054302 (2005)

Heat Capacity - Einstein model

There is a temperature dependence (i.e. distribution) of the oscillators!
Introduce Bose-Einstein distribution,

$$
\bar{n}=\frac{1}{\mathrm{e}^{\hbar \omega / k_{\mathrm{B}} T}-1}
$$

the total internal energy of the solid $U=3 N \hbar \omega\left(\bar{n}+\frac{1}{2}\right)$

$$
C_{\mathrm{v}}=\left(\frac{\partial U}{\partial T}\right)_{\mathrm{v}}=3 N k_{\mathrm{B}} F_{\mathrm{E}}\left(\frac{\hbar \omega}{k_{\mathrm{B}} T}\right)
$$

$$
F_{\mathrm{E}}(x)=\frac{x^{2}}{\left(\mathrm{e}^{x}-1\right)\left(1-\mathrm{e}^{-x}\right)}
$$

Energy levels are equally spaced!

Heat Capacity - Einstein/Debye model

Einstein Approximation: all modes (oscillators) have the same frequency $\Rightarrow \omega_{\mathrm{E}}$
Debye approximation: In the low temperature limit acoustic modes dominate. i.e. there is distribution of vibration modes !

Therefore the total internal energy should be,

Debye model - vibrational density of states

Debye assumed a dispersion relationship $\uparrow \mathbf{g}(\omega)$ (phonon in a box)

$$
\omega_{j}(k)=c k
$$

and a phonon distribution function

$$
g(\omega) d \omega \propto 4 \pi k^{2} d r
$$

therefore,

$$
g(\omega)=D \omega^{2}
$$

with a cutoff frequency, ω_{D}

Debye model

ω
Einstein model

$$
\begin{gathered}
g(\omega)=\frac{V}{2 \pi^{2}}\left(\frac{1}{v_{l}^{3}}+\frac{2}{v_{t}^{3}}\right) \omega^{2}=\frac{3 V}{2 \pi^{2}} \frac{\omega^{2}}{v_{a}^{3}} \\
U=\frac{3 V \hbar}{2 \pi^{2} v_{s}^{3}} \int_{0}^{\omega 0} \omega^{3} \frac{1}{\exp (\hbar \omega / k T)-1} d \omega \\
c_{V}=\int_{0}^{\omega \mathrm{D}} \frac{3 V \omega^{2}}{2 \pi^{2} c^{3}} \hbar \omega \frac{\partial n}{\partial T} \mathrm{~d} \omega
\end{gathered}
$$

ω

Phonon in a box

the total energy in the lattice vibrations is of the form $\quad U=3 \int_{0}^{E_{\max }} \frac{E}{e^{E / \lambda T}-1} d E$
expressed in terms of the phonon modes by expressing the integral in terms of the mode number n.

$$
U=\frac{3 \pi}{2} \int_{0}^{n_{\max }} \frac{h v_{s} n}{2 L} \frac{n^{2}}{e^{\ln n v_{s} n L L K T}-1} d n
$$

let $x_{\max }=\frac{h v_{s} n_{\max }}{2 L k T}=\frac{h v_{s}}{2 k T}\left(\frac{6 N}{\pi V}\right)^{1 / 3}=\frac{T_{D}}{T}$ the integral takes the form $U=\frac{9 N k T^{4}}{T_{D}^{3}} \int_{0}^{T_{0} / T} \frac{x^{3}}{e^{x}-1} d x$

What can we learn from Debye temperature?

Table 4.5 Debye temperatures T_{D}, heat capacities, and thermal conductivities of selected elements

	Crystal							
	$\mathbf{A g}$							
Be	$\mathbf{C u}$	Diamond	$\mathbf{G e}$	$\mathbf{H g}$	$\mathbf{S i}$	\mathbf{W}		
$T_{D}(\mathrm{~K})^{*}$	215	1000	315	1860	360	100	625	310
$C_{m}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}\right)^{\dagger}$	25.6	16.46	24.5	6.48	23.38	27.68	19.74	24.45
$c_{s}\left(\mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}\right)^{\dagger}$	0.237	1.825	0.385	0.540	0.322	0.138	0.703	0.133
$\kappa\left(\mathrm{~W} \mathrm{~m}^{-1} \mathrm{~K}^{-1}\right)^{\dagger}$	429	183	385	1000	60	8.65	148	173

Theoretical lattice dynamics Harmonic approximation

Force constant, Hooke's Law

$$
\Phi_{\alpha \beta}^{i j}=\frac{\partial^{2} E_{t o t}}{\partial u_{\alpha}^{i} \partial u_{\beta}^{j}}=-\frac{\partial F_{\alpha}^{i}}{\partial u_{\beta}^{j}} \approx-\frac{F_{\alpha}^{i}}{u_{\beta}^{j}} \quad i, j=1, N, \quad \alpha, \beta=x, y, z,
$$

Dynamic matrix is the Fourier transformation of force constants

$$
D_{\alpha \beta}^{i j}(q)=\frac{1}{\sqrt{M_{i} M_{j}}} \sum_{L} \Phi_{\alpha \beta}^{i, j+L} e^{-i q \llbracket\left(R^{j+L}-R^{i}\right)}
$$

Diagonalize Dynamic matrix to get phonon dispersions, and DOS

$$
\mathbf{u}(j l)=\frac{1}{\sqrt{N m_{j}}} \sum_{\mathbf{k}, v} \mathbf{e}(j, \mathbf{k}, v) \exp (i \mathbf{k} \cdot \mathbf{r}(j l)) Q(\mathbf{k}, v)
$$

Einstein approximation
Debye approximation

Theoretical molecular dynamics Beyond harmonic approximation

Time correlation function formalism

$$
P(\omega)=m \int\langle\dot{\boldsymbol{r}}(\tau) \dot{\boldsymbol{r}}(t+\tau)\rangle_{\tau} \mathrm{e}^{-i \omega t} \mathrm{~d} t
$$

$$
\langle\dot{\boldsymbol{r}}(\tau) \dot{\boldsymbol{r}}(t+\tau)\rangle_{\tau} \Rightarrow \quad P(\omega)
$$

J. M. Dickey and A. Paskein, Phys. Rev. 188, 1407 (1969)

J.S. Tse and M.L. Klein and I.R. McDonald, J. Chem. Phys,. 81, 6124 (1984)

The Mossbauer effect involves the emission and absorption of gamma rays from the excited states of a nucleus. When an excited nucleus emits a gamma ray, it must recoil in order to conserve momentum since the gamma ray photon has momentum. Mossbauer discovered that by placing emitting and absorbing nuclei in a crystal, one could use the crystal lattice for recoil, lessening the recoil energy loss to the point that these extremely sharp emission and absorption lines would overlap so that absorption was observed.

SASKATCHEWAN

Advantage of VDOS - no selection rules

Energy (meV)

Selection rules:

- Infrared

Only "u" modes are active $|\propto| \partial \mu /\left.\partial q\right|^{2}$

- Raman

Only " g " modes are active $|\propto| \partial \alpha /\left.\partial q\right|^{2}$

- NRVS

All modes are active $I \propto$ VDOS

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562

Extraction of sound velocity

$$
\begin{gathered}
g(\omega)=\frac{V \omega^{2}}{2 \pi^{2}} \frac{1}{v_{\mathrm{s}}^{3}} \Rightarrow g(\omega)=\frac{V \omega^{2}}{2 \pi^{2}}\left(\frac{1}{v_{L}^{3}}+\frac{2}{v_{T}^{3}}\right) \\
\frac{3}{V_{\mathrm{D}}^{3}}=\frac{1}{V_{\mathrm{P}}^{3}}+\frac{2}{V_{\mathrm{S}}^{3}} \\
\frac{K}{\rho}=V_{\mathrm{P}}^{2}-\frac{4}{3} V_{\mathrm{S}}^{2} \\
\frac{G}{\rho}=V_{\mathrm{S}}^{2}
\end{gathered}
$$

H.K. Mao, et.al., Science 292, 914 (2001)

Properties derived from vibrational density of states

The partition function for the harmonic lattice is given by

$$
\ln Z^{N}=-3 N \int \ln \left(2 \sinh \frac{\beta E}{2}\right) g(E) \mathrm{d} E
$$

the vibrational energy per atom

$$
U=-\frac{\partial \ln Z}{\partial \beta}=\frac{3}{2} \int E \operatorname{coth} \frac{\beta E}{2} g(E) \mathrm{d} E
$$

vibrational entropy per atom S

$$
S=k_{\mathrm{B}} \beta U+k_{\mathrm{B}} \ln Z
$$

the free energy per atom F

$$
F=-\frac{1}{\beta} \ln Z
$$

the specific heat per atom at constant volume

$$
c_{V}=\frac{\partial U}{\partial T}=k_{\mathrm{B}} \beta^{2} \frac{\partial^{2} \ln Z}{\partial \beta^{2}}=3 k_{\mathrm{B}} \int\left(\frac{\beta E}{2 \sinh (\beta E / 2)}\right)^{2} g(E) \mathrm{d} E
$$

mean force constant

$$
F_{m}=\frac{9}{10} \frac{k^{2}}{E_{r}} k_{\mathrm{B}}^{2} \theta_{\mathrm{D}}^{2}
$$

Why it works for multi-component systems?

Acoustical vibration:

 The two atoms on the unit cell vibrate along the same directionOptical vibration:
The two atoms on the unit cell vibrate in opposing motion.

Soft mode and Gruneisen parameter

$$
\gamma_{i}(q)=-\frac{\partial \ln \omega(q)_{i}}{\partial \ln V}
$$

$$
\widetilde{\nu}=\frac{1}{2 \pi c}\left(\frac{k}{\mu}\right)^{1 / 2}
$$

$F=-k q \quad \Rightarrow \quad-k=\frac{\partial F}{\partial q}=\frac{\partial^{2} E}{\partial q^{2}}$
For a transition state $\quad \frac{\partial^{2} \boldsymbol{E}}{\partial \boldsymbol{q}^{2}}>0$
$\boldsymbol{k}<0$ and \widetilde{v} is imaginary

SnI_{4} - effect of temperature

H. Liu, J. S. Tse, M. Y. Hu, W. Bi, J. Zhao, E. E. Alp, M. Pasternak, R. D. Taylor, and J. C. Lashley J. Chem. Phys., 143, 164508 (2015);

Phonon anharmonicity

1. The heat capacity becomes T independent for $T>T_{D}$.
2. There is no thermal expansion of solids.
3. Thermal conductivity of solids is infinite

$$
U(x)=U_{\text {harm }}(x)+U_{\text {anharm }}(x)=c x^{2}-g x^{3}-f x^{4}
$$

Quartic interactions:

If the lattice potential is harmonic, the phonon frequencies are volume-independent, and the thermal expansion coefficient is zero at all temperatures.

Anharmonic motions of Kr in the clathrate hydrate

J. S. Tse, D. D. Klug, J. Y. Zhao, W. Sturhahn, E. E. Alp, J. Baumert, C. Gutt, M. R. Johnson and W. Press' Nature Materials, 4, 917-921 (2005)

Acknowledgements

E. Alp

W. Sturhahn
J. Zhao
W. Bi
M. Hu

