(Conducting Nuclear Resonant Scattering Experiment at 3ID, APS)

Jiyong Zhao

Advance Photon Source, Argonne National Laboratory

Workshop on Nuclear Resonant Scattering APS, November 11-13, 2016

To plan for an experiment of NRS

1. What can be measured? NRIXS: thermal dynamics SMS: hyperfine interactions

2. What's available at the beamline how strong the beam, how small the beam size, how low/high the temperature or field etc. what else?

3. How and when to apply the beam time

To plan for an experiment for NRS

What can be measured?
 NRIXS: thermal dynamics
 SMS: hyperfine interactions

2. What's available at the beamline how strong the beam, enriched or natural, how small the beam size, how low/high the temperature or field etc.

3. How and when to apply the beam time

Nuclear resonance beamlines around the world, 2016

24-bunch mode, 4.25mA/bunch, 65%

324-bunch mode, 0.3 mA/bunch, 20%

Hybrid mode 1+8X7-bunch, 15%

1296 buckets, 2.84 nsec separation

APS storage ring filling pattern

Timing technique to select NRS delayed signal from a strong electronic scattering background

Timing technique

4 stations: A-B-C-D at 3ID, APS

X-ray Source and Instruments for NRS

- 1. SR Source (undulator)
- 2. Monochromator (HHLM, HRM)
- 3. Focusing (KB, toroidal mirror, CRL)
- 4. Environments (HT, HP, LT, E/M-field)

Setup for a synchrotron radiation nuclear resonant scattering experiment

Synchrotron radiation at the Advanced Photon Source:

At 3ID, there are two 2.4 m long undulators, with 2.7 cm period

3ID undulator and HHLM

Parameters for running 3ID_undulators Two undulators: 2.7cm, 88 periods & Performance of Diamond (111) HHLM

Energy (KeV)	Isotopes	Ky	Gap (mm)	Vertical Divergence of 3ID_U (µrad)	HHLM acceptance (µrad)		∆E after HHLM (eV) (measured)		Flux after HHLM vhile WBS 0.4mmX3mm THz(phs/sec/100mA)	
					Calculate	Measure	Caculated	Measured	Calculated	Measured
9.403	⁸³ Kr	1.3	12.7	15.6	19.3		0.7		70	
14.413	⁵⁷ Fe	0.6	19.5	13.7	12.3	14.4	0.82	0.93	29	20
21.657	¹⁵¹ Eu	1.7	10,7	12.4	8.0	9.5	1.23	1.57	27	10
23.880	¹¹⁹ Sn	1.5	11.5	12.1	7.6	8.0	1.29	2.7	23	

ID-A: High heat-load monochromator

Kohzu high-heat-load monochromator consists of two water-cooled Diamonds

E (meV)

High-energy resolution monochromator (HRM)

Resolution function HRM for 83Kr

Designed by Toellner

3ID-B: High energy-resolution monochromator and focusing optics

Generations of high-resolution monochromators

HRM at Sector 3

⁵⁷Fe, 14.4 keV,

¹⁵¹Eu, 21.541 keV,

¹¹⁹Sn, 23.880 keV,

¹⁶¹Dy, 25.651 keV,

⁸³Kr, 9.404 keV,

HRM: 1/0.8/2.3/5 meV HRM: 0.8 meV HRM: 0.85/0.14 meV HRM: 0.5 meV HRM: 2.3/1.0 meV

Nuclear data for Mössbauer isotopes

Isotope	Energy	Life time	Energy width	Natural	Internal conv.	Cross section $= (222)^{2}$	Recoil energy	Туре
	E(KeV)	$l_{1/2}(ns)$	1 (nev)	abundance(%)	coefficient a	$\sigma_0(\text{cm}^2 \ 10^{-10})$	$E_{R}(mev)$	
¹⁸¹ Ta	6.22	6800	0.067	99.99	46	1.6	0.116	E1
¹⁶⁹ Tm	8.41	3.9	1.17	100	268	0.31	0.24	M1
⁸³ Kr	9.40	147	3.1	11.5	19.9	1.1	0.56	M1
⁷³ Ge	13.26	4 103	0.11	7.8	1000	0.0076	1.29	E2
⁵⁷ Fe	14.41	97.8	4.7	2.15	8.21	2.57	1.95	M1
151Eu	21.53	9.7	0.47	47.9	28.6	0.23	1.66	M1
¹⁴⁹ Sm	22.49	7.1	0.641	13.9	50	0.0711	1.82	M1
¹¹⁹ Sn	23.88	17.7	0.257	8.6	5.12	1.40	2.58	M1
¹⁶¹ Dy	25.65	28.1	0.162	19.0	2.9	0.95	2.2	E1
⁴⁰ K	29.56	4.26	1.07	0.012	6.6	1.6	11.6	M1

Unique capability at 3ID for NRS

Beam focusing at 3ID-B

K-B focusing mirror

Beam size: 6 μm x 7 μm Acceptance: 0.4mm x 0.6 mm

Beam size: 18 μm x 12 μm Acceptance: 0.4mm x 1.8 mm

Toroidal + K-B tandem focusing at 3-ID-APS

Shadow simulations, A. Alatas

Toroidal + K-B tandem focusing at 3-ID-C (IXS), and 3ID-D (NRS)

Sagittal focusing, horizontal, 46 mm

Vertical focusing, 11-33 km, $\theta = 1.6$ mrad

Sample environment for NRS at 3ID

Low temperature, flow cryostat

High pressure and high temperature

High pressure and low temperature

Experimental Setup for Nuclear Resonant Inelastic X-ray Scattering under low temperature

Unique capability at 3ID: HP/HT for NRS

NRIXS-SMS and diffraction

In situ X-ray diffraction, NRIXS, and SMS studies in a LHDAC provide structural (density), magnetic, elastic, vibrational, and thermodynamic information of the sample. This is also a powerful tool to detect melting.

HP-HT Nuclear resonant scattering

Fast Temperature Readout system(FasTeR) NRS+ Laser heating+ Spectroradiometer+ FasTeR spectrometer High pressure melting

NRS at HPHT setup

NRIXS ->

<- SMS

<- Hotspot

Example sample loading->

NRIXS at High-P Low-T

Design of a miniature panoramic diamond anvil cell (DAC).

NRIXS and SMS of EuFe2As2 under LT and HP

Active user programs at 3ID, APS with the following unique capabilities

- 1. A low temperature (4K) and high magnetic field (9T) and high pressure system for NFS. (since 2007)
- 2. A laser heated diamond anvil cell system (since 2002)
- 3. An In-situ diffraction system (since 2008)
- 4. An on-line Ruby system (since 2011)
- 5. Dynamic pressure adjusting system

(gear box and gas-driven membrane cell). (since 2011)

6. Low temperature (9K) and high pressure (Mbar) system for NRIXS.

To use the facility at 3ID, APS

Nine months of running, in three periods

- T1-period, Feb~Apr;
- T2-period, Jun~Aug;
- T3-period, Oct-Dec.

Two type of proposals
GUP (General User Proposal)
effective for two years
PUP (Partner User Proposal):
Jointly developing new capability for the beamline, with guaranteed beam time each run

To become a user at 3ID

Plan ahead

Talk to the beamline scientists - (Sample thickness, size, environment ...) Apply through either - GUP (General User Proposal) or – PUP (Partner User Proposal) Deadline: 2017-1, Oct-28-2016 2017-2, Mar-3-2017 2017-3, Jul-7-17

Thank you for your attention and See you at the beamline!