

Synchrotron Mössbauer Spectroscopy (SMS)

Wolfgang Sturhahn

wolfgang@gps.caltech.edu wolfgang@nrixs.net

Phenomenon to observation:

> The nucleus is not a point charge

- ☆ internal dynamics
- ☆ volume
- 🕁 spin
- ☆ quadrupole moment

- \Rightarrow nuclear transitions
- \Rightarrow isomer shift
- ⇒ magnetic level splitting
- \Rightarrow quadrupole splitting
- SMS Synchrotron Mössbauer Spectroscopy (a.k.a. NFS)
 - ☆ internal magnetic fields, electric field gradients, isomer shifts
 - applications include magnetic phase transitions,
 determination of spin & valence states, and melting studies

recent reviews of Nuclear Resonant Spectroscopy:

- E. Gerdau and H. deWaard, eds., Hyperfine Interact. 123-125 (1999-2000)
- W. Sturhahn, J. Phys.: Condens. Matt. 16 (2004)
- R. Röhlsberger (Springer Tracts in Modern Physics, 2004)
- W. Sturhahn and J.M. Jackson, GSA special paper 421 (2007)

Excitation of the 57 Fe nuclear resonance:

Scattering channels:

lattice

nucleus & core electrons

NRIXS

(negligible)

SMS

coherent elastic

 $|\Psi_i\rangle = |\Psi_f\rangle$

incoherent $|\phi_{i}^{(i)}\rangle \neq |\phi_{i}^{(f)}\rangle$ coherent inelastic d(i) = d(f)

$$\left| \chi_{i} \right\rangle = \left| \phi_{j}^{(f)} \right\rangle$$
 $\left| \chi_{i} \right\rangle \neq \left| \chi_{f} \right\rangle$

G.V. Smirnov, Hyperfine Interact. 123-124 (1999)

Nuclear level splitting:

NRS and traditional MB spectroscopy:

 $\approx 8 \times 10^{-5}$

 $\approx 1 \times 10^{-4}$

W. Sturhahn, J.Phys.: Condens.Matt. 16 (2004)

traditional Mössbauer (MB) spectroscopy

Synchrotron Mössbauer Spectroscopy (SMS)

SMS advantages

- intensity and collimation
- control of polarization
- micro-focusing

Potential SMS difficulties

- ➤ accessibility
- data evaluation

Energy range (eV)

Origin of oscillations in time spectra:

Signatures in SMS time spectra:

- ☆ single line:
 - isomer shift only
- ☆ two lines:
 - electric field gradient, quadrupole splitting
 - two sites with different isomer shifts
- ☆ many lines:
 - magnetic field
 - several sites with different line positions

 $\begin{array}{l} \mathsf{D}_{\mathsf{eff}} = \mathsf{F}_{\mathsf{LM}} \ \sigma_{\mathsf{0}} \ \rho \ \mathsf{D} \\ \mathsf{Lamb}\text{-M}\ddot{\mathsf{o}}ssbauer \ factor \\ resonant \ cross \ section \\ nuclei \ per \ area \\ geometric \ thickness \end{array}$

Experimental setup for SMS:

- \rightarrow monochromatization to the nuclear transition
- \succ energy is tuned to the nuclear transition

Target applications:

- > perfect isotope selectivity & complete suppression of nonresonant signals
- \succ excellent sensitivity (10¹² nuclei in the focused beam)

Magnetism:

> magnetism is of great importance in science and technology.

- > magnetism is inseparable from the electronic state of matter.
- high pressure, temperature, composition are basic parameters to modify the electronic state and thus affect magnetism.

Some experimental methods:

- spatially coherent, snapshot in time
 - ☆ magnetic neutron diffraction
 - ☆ magnetic x-ray diffraction

local in space, snapshot in time

- ☆ polarization-dependent x-ray absorption such as XMCD
- ☆ x-ray emission spectroscopy (XES)

- coherent in space and time
 - ☆ nuclear resonant scattering (SMS)

Diamond anvil cells for Mbar pressures:

 ☆ A force applied to the diamond anvils can produce extreme pressures in a small sample chamber.

⊢____ 100 μm

50 mm

<u>Re-entrant magnetism in Fe_2O_3 :</u>

- ☆ canted anti-ferromagnet at low pressures (α−Al₂O₃ structure)
- ☆ loss of magnetic order at intermediate pressures (Rh₂O₃–II structure)

complex magnetic order
 at high pressures
 (post-perovskite structure)

<u>Re-entrant magnetism in Fe₂O₃:</u>

- Iow-spin Fe at intermediate pressures (XES measurements)
- ☆ complex magnetism at high pressures is stabilized by high-spin Fe

☆ but the actual magnetic structure has not been determined yet

H.-S. Shim, A. Bengston, D. Morgan, W. Sturhahn, K. Catalli, J. Zhao, M. Lerche, V. Prakapenka, Proc. Natl. Acad. Sci. 106 (2009)

Compression of (Mg_{0.83}**Fe**_{0.17}**)O periclase:**

Structure of Periclase:

- halite (rocksalt) structure; cubic unit cell
- MgO and FeO form a solid solution
- Mg and Fe atoms are surrounded by six oxygen atoms that form a slightly distorted octahedron
- upon compression the localized (non-binding) 3d electrons of Fe can change configuration

<u>3d-electrons for Fe(II), (Ar)3d⁶:</u>

energy: $3\Lambda - 2.4\Delta$

 $2\Lambda - 1.4\Delta$ $\Lambda - 0.4\Delta$

3d-electron pseudo-charge density surfaces at 0.3 e/Å³ from T.Tsuchiya et al., PRL 96 (2006)

the minimum-energy state will change for

 $\Lambda = \Delta$

 \succ this identifies a <u>spin transition</u>

SMS analysis of spin crossover in periclase:

➤ time spectra

(response of sample following x-ray pulse)

☆ the crossover from a high-spin to low-spin state of Fe significantly affects the density, sound velocities, elastic properties, and transport properties of ferropericlase.

electric field gradient and isomer shift

J.-F. Lin, A.G. Gavriliuk, V.V. Struzhkin, S.D. Jacobson, W. Sturhahn, M.Y. Hu, P. Chow, C.-S. Yoo Phys. Rev. B 73 (2006)

Spin wave in a Fe/Cr multilayer:

Polarization and direction:

A. Bettac, K.H. Meiwes-Broer, Phys. Rev. B 67 (2003)

Spin structure in a thin Fe film:

R. Röhlsberger, H. Thomas, K. Schlage, E. Burkel, O. Leupold, R. Rüffer, Phys. Rev. Lett. 89 (2002)

In conclusion:

Synchrotron Mössbauer Spectroscopy (SMS)

- ☆ coherent elastic scattering of x-rays
- \Rightarrow neV resolution over μ eV range
- ☆ internal magnetic fields, electric field gradients, isomer shifts
- ☆ various environmental conditions

Application of SMS

- ☆ unique method to study magnetism in targeted layers
- ☆ determination of magnetic field magnitude and direction
- \Rightarrow identify Fe(II), Fe(III) and their spin states in minerals
- ☆ reliable software required for evaluation of SMS time spectra
- ☆ some suitable resonant isotopes are ⁵⁷Fe, ¹¹⁹Sn, ¹⁵¹Eu, ¹⁶¹Dy

#