Instrumentation for Nuclear Resonant Scattering at 3ID, APS

Jiyong Zhao

Advance Photon Source, Argonne National Laboratory

Workshop on Data Evaluation using CONUSS and PHOENIX November 2-4, 2012

Setup for a synchrotron radiation nuclear resonant scattering experiment

X-ray Source and Instruments for NRS

- 1. SR Source (undulator)
- 2. Monochromator (HHLM, HRM)
- 3. Focusing (KB, toroidal mirror, CRL)
- 4. Environments (HT, HP, LT, E/M-field)

The time discrimination trick:

The excited nucleus decays incoherently with its natural life time τ .

1 revolution=3.68 µsec =>1296 buckets

Nuclear resonance beamlines around the world, 2010

Synchrotron radiation at the Advanced Photon Source:

At 3ID, there are two 2.4 m long undulators, with 2.7 cm period

3ID undulator and HHLM

Parameters for running 3ID_undulators Two undulators: 2.7cm, 88 periods & Performance of Diamond (111) HHLM

Energy (KeV)	Isotopes	Ky	Gap (mm)	Vertical Divergence of 3ID_U (µrad)	HHLM acceptance (µrad)		∆E after HHLM (eV) (measured)		Flux after HHLM vhile WBS 0.4mmX3mm THz(phs/sec/100mA)	
-					Calculate	Measure	Caculated	Measured	Calculated	Measured
9.403	⁸³ Kr	1.3	12.7	15.6	19.3		0.7		70	
14.413	⁵⁷ Fe	0,6	19.5	13.7	12.3	14.4	0.82	0.93	29	20
21.657	¹⁵¹ Eu	1,7	10.7	12.4	8.0	9.5	1.23	1.57	27	10
23.880	¹¹⁹ Sn	1.5	11.5	12.1	7.6	8.0	1.29	2.7	23	

Nuclear data for Mössbauer isotopes

Isotope	Energy E(keV)	Life time	Energy width Γ(neV)	Natural	Internal conv.	Cross section $\sigma_{\rm c}$ (cm ² 10 ⁻¹⁸)	Recoil energy E ₋ (meV)	Туре
¹⁸¹ Ta	6.22	6800	0.067	99.99	46	1.6	0.116	E1
¹⁶⁹ Tm	8.41	3.9	1.17	100	268	0.31	0.24	M1
⁸³ Kr	9.40	147	3.1	11.5	19,9	1.1	0.56	M1
⁷³ Ge	13.26	4 10 ³	0.11	7.8	1000	0.0076	1.29	E2
⁵⁷ Fe	14,41	97.8	4.7	2.15	8.21	2.57	1.95	M1
¹⁵¹ Eu	21.53	9.7	0.47	47.9	28.6	0.23	1.66	M1
¹⁴⁹ Sm	22.49	7.1	0.641	13.9	50	0.0711	1.82	M1
119 <mark>Sn</mark>	23.88	17.7	0.257	8.6	5.12	1.40	2.58	M1
¹⁶¹ Dy	25.65	28.1	0.162	19.0	2.9	0.95	2.2	E 1
⁴⁰ K	29.56	4.26	1.07	0.012	6.6	1.6	11.6	M1

4 stations: A-B-C-D

Kohzu high-heat-load monochromator consists of two water-cooled Diamonds, 3ID, Advanced Photon Source

Generations of high-resolution monochromators

HRM at Sector 3

 57Fe,
 14.4 keV,

 151Eu,
 21.541 keV,

 119Sn,
 23.880 keV,

 161Dy,
 25.651 keV,

 83Kr,
 9.404 keV,

HRM: 1/0.8/2.3/5 meV HRM: 0.8 meV HRM: 0.85/0.14 meV HRM: 0.5 meV HRM: 2.3/1.0 meV

Timing technique

Timing technique

APD prompt limit and non-linearity region

APS ring: Bunch separation: 153 ns Corresponds to 6.5 MHz

With single photon counting per bunch, the maximum prompt count-rate is 6.5 MHz.

Mean number of absorption ~ 2 when the prompt ~ 5.6 MHz.

T. Toellner

Avoid damaging the APD, have the prompt < 6.5 MHz.

Use the ion chamber reading as the normalization detector, instead of prompt reading.

Unique capability at 3ID for NRS

Beam focusing at 3ID-B

Beam size: 6 μm x 7 μm Acceptance: 0.4mm x 0.6 mm

Beam size: 18 μm x 12 μm Acceptance: 0.4mm x 1.8 mm

Toroidal + K-B tandem focusing at 3-ID-C (IXS), and 3ID-D (NRS)

Sagittal focusing, horizontal, 46 mm

Vertical focusing, 11-33 km, $\theta = 1.6$ mrad

Toroidal + K-B tandem focusing at 3-ID-APS

Shadow simulations, A. Alatas

Toroidal + K-B tandem focusing at 3-ID-APS

Sample environment for NRS at 3ID

Low temperature, flow cryostat

High pressure and high temperature

High pressure and low temperature

Low temperature for both SMS and NRIXS using helium flow cryostat (6K) and nitrogen jet flow (80K)

Unique capability at 3ID: HP/HT for NRS

NRIXS-SMS and diffraction

In situ X-ray diffraction, NRIXS, and SMS studies in a LHDAC provide structural (density), magnetic, elastic, vibrational, and thermodynamic information of the sample. This is also a powerful tool to detect melting.

HP-HT Nuclear resonant scattering

Fast Temperature Readout system(FasTeR) NRS+ Laser heating+ Spectroradiometer+ FasTeR spectrometer High pressure melting

NRS at HPHT setup

NRIXS ->

<- SMS

<- Hotspot

Example sample loading->

3ID unique capability: An on-going development of High pressure and low temperature for NRIXS using flow cryostat (~ 10K, 50 GPa)

Active user programs at 3ID, APS with the following unique capabilities

Currently available:

- 1. A low temperature (4K) and high magnetic field (9T) and high pressure system for NFS. (since 2007)
- 2. A laser heated diamond anvil cell system (since 2002)
- 3. An In-situ diffraction system (since 2008)
- 4. An on-line Ruby system (since 2011)
- 5. Dynamic pressure adjusting system

(gear box and gas-driven membrane cell). (since 2011)

Under development:

- 1. A fast temperature readout system.
- 2. Low temperature (4K) and high pressure (Mbar) system for NRIXS.

To become a user at 3ID

- Plan ahead
- Talk to the beamline scientists
- Apply through either GUP (General User Proposal) or PUP (Partner User Proposal)

Deadline: 2013-1, Oct-26-12

2013-2, Mar-8-13 2013-3, Jul-12-13 Thank you and hope to see you at the beamline!