29ID User Manual

Start-up

- Log-on into any linux box:
 - User: 29iduser
 - Pwd: ask staff

• ARPES (29ID-C):

- Open a terminal
- type: *start_arpes*
- 3 screens pop-up:
 - Beamline overview (BL_User)
 - ARPES manipulator (29idc_graphic)
 - Electron Analyzer (29idc_SESall)

RSXS (29ID-D):

- Open a terminal:
- type: *start_rsxs*
- 2 screens pop-up:
 - Beamline overview (BL_User)
 - RSXS manipulator (29idd_graphic)
- Ask beamline staff to set-up a user folder.

!!! WARNINGS !!!

Before <u>transferring</u> a sample or when you are done for the day, always :

- (1) turn off detector HV
- (2) close the C/D-shutter
- (3) close the chamber valve.

ARPES endstation:

- Mirror chamber ~ 10⁻¹⁰ Torr (upstream of chamber valve)
- Main chamber IG~ 10⁻¹⁰ Torr
- Intro chamber IP ~ 10⁻¹⁰ Torr
- Load Lock ~ 10⁻⁷ Torr
- MCP/Screen HV: 1550 / 3600 V

Pressure in the endstation VS11C (D) needs $< 1e^{-9}$ (1 e^{-7}) Torr to open to the beamline and turn on detector HV

RSXS endstation :

- Mirror chamber ~ 10⁻⁹ Torr (upstream of chamber valve)
- Main chamber ~ 10⁻⁸ Torr
- Load Lock ~ 10⁻⁶ Torr
- MCP HV: -2570 V

Beamline Overview (1)

Drop in/out diagnostic

Beamline Overview (2)

- The ID can take **up to 6 minutes** to go around its hysteresis loop this is **normal**.
- If the ID stays in the busy state for more than 10 minutes, you can restart it either by using the Python script *IDRestart ()* or changing mode
- If ID is off: use Python script IDStart(mode) with mode = "H", "V", "RCP", "LCP"
- The mono is fast if it stays "busy" for more than a couple of minutes, call staff

Beamline Overview (3)

iPython - Beamline

When starting iPython from !	ools, all of the BL functions are automatically loaded & compiled:
In [1]: SetBL(1125)	# sets BL energy (ID & Mono) and corresponding apertures (1A & 2B)
In [1]: SetMono(1125)	# sets Mono energy only
In [1]: SetExitSlit (100)	# sets Exit Slit (μm) : ↔ ARPES: 5 < Exit Slit < 300 μm ↔ RSXS: 5 < Exit Slit < 500 μm
In [1]: Switch_IDMode ("X")	# Switch ID Polarization - with "X" = "RCP", "LCP", "H", "V"
In [1]: Switch_Grating ("X")	# Switch Mono Grating – with "X" = "HEG", "MEG"
In [1]: IDStart ("X")	# Turn on the ID (see p5) – with "X" = "RCP", "LCP", "H", "V"
In [1]: IDRestart ()	# Restart the ID (see p5) – does not change current polarisation
In [1]: Move_ARPES_motor("MotorName", value) # MotorName= "x", "y", "z", "th"
In [1]: Move_RSXS_motor("I	MotorName", value) # MotorName= "x", "y", "z", "th", "tth"

For common ARPES/RSXS scripts, see examples (read only): /home/beams22/29IDUSER/Documents/User_Macros/Examples_ARPES(RSXS).py If you'd like to look at the details of the BL scripts (read only), see: /home/beams22/29IDUSER/Documents/User_Macros/ScanFunctions_29id.py

iPython - Scans

Turns current amplifier average ON (for n>0) / OFF (n=0) In [1]: CA Average(n) with n = points to be averaged In [1]: Scan Mono Go(ScanDimension, start, stop, step, settling_time[†]) # Starts mono scan with: \Rightarrow ScanDimension = 1, 2, 3 or 4 \Rightarrow settling time = 0.1s per default (no argument) Aborting a script In [1]: Scan Energy Tracking D Go(ScanDimension, start, stop, step) (ctrl+C) does not # Starts energy scan with tracking ID with: abort the current \Rightarrow ScanDimension = 1, 2, 3 or 4 scan record!!! WARNING: very slow !!!! Use Fixed ID if possible: \Rightarrow for energy range > 5% of central photon energy In [1]: Scan Energy Go(ScanDimension, start, stop, step, settling time[†], ID offset[†]) # Starts energy scan with fixed ID: \Rightarrow ScanDimension = 1, 2, 3 or 4 settling time = 1s per default (no argument) ID energy is set to: (start+stop)/2+ID offset \Rightarrow ID offset = 0 per default (no argument) \Rightarrow for energy range < 5% of the photon energy [†] Optional argument

Notes Scan_Energy_Go:

- RSXS: The scripts automatically drops in the mesh (=[D11] ca14) for normalization I/I_0 ; mesh is automatically retracted at the end of the scan.
- ARPES: At the moment, C branch only has a diode, no mesh; repeat scan with C-diode inserted (=[D12] ca15) to normalize I/I₀
- Settling time is always set back to 0.1s automatically at the end of any scan.

Scan Record

- For 2D scans (e.g. Y/Z map):
 - open Scan2 (outer loop)
 - fill in Scan2 (motor pv read/drive and start/stop/step)
 - start Scan2: Scan2 positioner will move to its first position then trigger Scan1
- For higher dimensionality (e.g. X/Y/X/theta/energy...): follow the same steps using Scan3/4/5...
- Start scan by clicking scan from highest Scan# (most outer loop)
- Scan1 is <u>always</u> the most inner loop.

abort the current

scan record

dview

Striptool

Striptool allows to monitor a PV over time. It is useful to optimize sample position while looking at the count rate:

- In <u>! Tools</u> select Striptool
- "Plot New Signal": enter PV to monitor, e.g.:
 - TEY (ARPES): 29idc:ca2:read
 - EAV (ARPES): 29idcEAV:Stats1:Total_RBV
 - TEY (RSXS): 29idd:ca2:read
 - Small diode (RSXS): 29idb:ca16:read
- Click "Connect"
- Can monitor several PVs at the same time.

	X StripTool Controls								
<u>F</u> ile <u>W</u> indow							<u>H</u> elp		
Plot New Signal:					Connect				
Curves Controls									
Name	Color	Plot	Log10	Precision	Min	Max Modify	Remove		
29idcEAV:Stats1:Total	-			0	477	584 Modify	Remove		
29idc:ca2:read				5	0.00000	0.00000 Modify	Remove		

Auto-scale

Pan: left/right

Pan: up/down

Zoom X in/out

Zoom Y in/out

Beam Dump

- When the beam dumps:
 - Status button turns red: ID permission is switched to "Operator"
 - Main shutter is disable
 - Check Infos for updates / time estimate
 - iPython scripts <u>will pause</u> when trying to change energy and/or start a new scan – i.e. you will only loose the one scan that was running at the time of the beam dump
- <u>After</u> a beam dump (control room's loud speaker announcement):
 - Check main shutter is open
 - Check ID status button (p5):
 - if red, the ID is not in user mode: call floor coordinator (2-0101, then dial 2601 when prompt) or control room (2-9424)
 - if black, the ID is off: use Python script StartID(mode) with mode = "H", "V", "RCP", "LCP"
 - Check ID polarization & energy are correct !!!

Troubleshooting: No counts?

- Checklist:
 - Is there current in the ring?
 - Are all the shutters/valves opened? ➡ beamline sketch should be green all the way up to the end-station

 - Drop mesh/diode in, does it read current? (don't forget to pull it out!)
 - Did you try to open-up the exit slits?
 - Do the Mono & ID readback values match each other (within ~10%)?
 - Is there TEY current?
 - Is the sample reasonably close to measuring position? (check camera)
 - MPA / SES : Is the HV ON?
 - ARPES : Is the EA viewer ON? Is the Kinetic Energy appropriate?
 - Check slits 1A/2B: click sync All , all slits should be of the order of millimeters and centered at 0
- If all of the above is true:
 - Tweak mono energy to optimize current on TEY
 - Refine sample position by performing a 2 or 3D scan
 - ARPES : Increase Pass Energy and/or analyzer slit to increase count rate; go to a deep core level

ARPES manipulator

Electron Analyzer

XPS Mode	1	2	5	10	20	50	100	200	500
Trans	0-76	0-107	1-237	1-453	3-968	7-6041	21-6000	30-6206	283-6504
Angular		1-52	2-131	5-262	10-523	24-1309	34-6105	230-6206	
Angular_1						126-2947	252-1401	844-1261	
Angular_5							252-1323	1043-1270	

iPython - ARPES

In [1]: Scan_ARPES_motor_Go("MotorName", start, stop, step, settling_time[†], mode[†]) # Starts motor scan: S MotorName= "x", "y", "z", "th" settling_time = 0.1s per default (no argument) \Rightarrow mode = "relative" for relative scan: "absolute" per default (no arg.) In [1]: Scan ARPES 2Dmotor Go("MotorName1", start1, stop1, step1, "MotorName2", start2, stop2, ... step2, settling_time[†], mode[†]) # Starts 2D motor scan: ➡ MotorName= "x", "y", "z", "th" \Rightarrow settling time = 0.1s per default (no argument) \Rightarrow mode = "relative" for relative scan: "absolute" per default (no arg.) In [1]: Move ARPES Sample(ListMotor) # Move to a given position define by ListMotor: ➡ ListMotor = ["Sample Name", x, y, z, th, coeff[†]] \Rightarrow coeff = adjust number of iteration for a given position (see examples) value set to 1 per default In [1]: Resolution_ARPES(grating, energy, Exit Slit, PE, slit_SES, T(K)) # Calculate the theoretical resolution ⇔ grating = "HEG" or "MEG" Sit Slit = 10, 20, 50, 100, 200 SPE = Pass Energy \Rightarrow Slit SES = 1 to 9 (see slit table in control room)

iPython - ARPES

In [1]: FermiMap(ListPositions,ListEA)

Start a series of scan for a given number of sample positions defined in ListPositions

In [1]: KzMap(start,stop,step,ListEA)

Start a series of scan vs photon energy

For common ARPES scripts, see examples (read only): /home/beams22/29IDUSER/Documents/User_Macros/Examples_ARPES.py

Electron Analyzer crash

- The epics version of the Electron Analyzer data acquisition is running from a Windows machine named "Glick".
- If the EA screens fields turn white, it is because it crashed. To restart it, open a remote session to glick:
 - Open a terminal
 - Type: glick_29id
 - Enter password: ask staff
 - On Glick, close the (black) terminal window make sure it closes properly!
 - Double click on the shortcut "start_ioc.bat" on the lower left corner of the desktop.
 - A new terminal window pops-up, the EA screen should be ready to use within a few seconds.

RSXS manipulator

MPA Area Detector

MPA Status:
 OK to turn on HV if P < 1e⁻⁷ Torr
 Detector in direct beam <u>or</u> count went above authorized limit:
 ⇒ 7.3 on screen (i.e. ~10⁵ Hz)
 ⇒ HV off to protect the MPA
 Not OK - call staff

iPython - RSXS

In [1]: Move_RSXS_Sample(ListMotor) # Move to a given position define by ListMotor: ➡ ListMotor = ["Sample Name", x, y, z, th, tth[†]] In [1]: Move_th2th(th_value, tth_offset) # where the offset is the offset between given detector and direct beam: \Rightarrow MPA: offset = 0 ➡ D1-D: offset = 20 \Rightarrow D2-D: offset = 33ish – to be refined regularly In [1]: Scan_RSXS_motor_Go("MotorName", start, stop, step, settling_time[†], mode[†]) # Starts motor scan: ➡ MotorName= "x", "y", "z", "th", "tth" \Rightarrow settling time = 0.1s per default (no argument) \Rightarrow mode = "relative" for relative scan: "absolute" per default (no arg.) In [1]: Scan RSXS 2Dmotor Go("MotorName1", start1, stop1, step1, "MotorName2", start2, stop2, ... step2, settling_time[†], mode[†]) # Starts 2D motor scan: ➡ MotorName= "x", "y", "z", "th", "tth" Settling time = 0.1s per default (no argument) \Rightarrow mode = "relative" for relative scan; "absolute" per default (no arg.) In [1]: Scan_th2th_Go(start, stop, step, tth_offset, settling_time[†]) # Starts th-tth scan for a given tth_offset: \Rightarrow MPA: offset = 0 ➡ D1-D: offset = 20 \Rightarrow D2-D: offset = 33ish – to be refined regularly assuming sample is aligned at th=0 in grazing incidence

[†] Optional argument

Align Sample - RSXS

- In normal incidence (preset position Normal):
 - Set Y /Z using cursor on camera
 - Refine by doing (Y,Z) 1D scan and/or 2D map for inhomogeneous samples
- In grazing incidence (th=0):

 - Scan th (coarse rocking curve: -4/4/0.1) to find th₀ using D-2:
 reset th = 0 at maximum intensity
 - Repeat until X₀ and th₀ converge
- Go to th-2th condition (e.g. th=5, tth=10+Diode2_{offset}):
 - Solution State State
 - Scan_RSXS_motor_Go("th",-0.5,0.5,0.01,"relative")
 - ➡ determine center position using gaussian fit
 - Set center position to (tth-Diode2_{offset})/2
 - \Rightarrow refine X_0 if needed.