Optics Testing at a Repurposed Beamline: 1-BM

Albert Macrander

APS/User Operations Monthly Meeting, Nov. 20, 2013

Optics and Detector test beamlines worldwide

This is a representative list, rather than a complete one

- Diamond Light Source, Oxfordshire, UK: bend B-16 "Test beamline" <u>http://www.diamond.ac.uk/Home/Beamlines/B16.html</u>
- ESRF, Grenoble, France: bend BM05 "Instrumentation Facility" <u>http://www.esrf.eu/UsersAndScience/Experiments/Imaging/BM05</u>
- Swiss Light Source, Villigen, Switzerland: bend X05DA "Optics Test Beamline" <u>http://www.psi.ch/sls/optics/optics</u>
- Petra III Extension, Hamburg, Germany: P21.5 "Education, Training and Testing End Station" <u>http://petra3-extension.desy.de/e84814/e86697/</u>
- BESSY II, Berlin, Germany: PTB-Laboratory with nine experimental stations including characterization of optical components <u>http://www.ptb.de/mls/aufgaben/bessylab.html</u>
- SSRL, Stanford, USA: bend 2-2 "White light station" <u>http://www-ssrl.slac.stanford.edu/beamlines/bl2-2/</u>
- ALS, Berkeley, USA: bend 5.3.1 "Instrumentation development" <u>http://www-als.lbl.gov/index.php/beamlines/beamlines-directory/104-531.html</u>
- NSLS, Upton, USA: bend U3C "Livermore metrology" <u>http://beamlines.ps.bnl.gov/beamline.aspx?blid=U3C</u>

→ + APS Beamline 1-BM

Optics and Detector Testing Beamline: 1-BM

- Strongly recommended in Sept. 2011 DoE review of APS.
- Frequent, brief access on a stable setup needed for developmental efforts: this is difficult to achieve on most other beamlines, which require science-based general user proposals that are often scheduled in one time period over four months.
- Crystal optics testing: topography- both monochromatic and white beam for APS crystal optics development and for user community presently based at NSLS. Also for Industrial Users (Rubicon Technology, Inc.).
- Talbot interferometry for coherence length measurements.
- IXS analyzer testing: polarization selection, spherical backscattering
- Mirror testing: K-Bs, adaptive, radiation damaged.
- Zone plate testing: MLLs, FZP
- **5** GUP proposals submitted for 2013-3, 6 new GUP proposals for run 2014-1.

Acknowledgements

Optics Group:

Naresh Kujala

Shashidhara Marathe Xianbo Shi

Xianrong Huang

Bing Shi

Ray Conley

Lashen Assoufid

Detector Group:

Robert Bradford Matt Moore Russell Woods

Lisa Gades

Sector 1 (EDD):

Ali Mashayekhi John Okasinski

John Almer

Optics Mounting:

Deming Shu IXS polarization selection analyzers: Clem Burns (Western Michigan)

Xuan Gao (Western Michigan)

IXS analyzers:

Jerry Seidler (Univ. Washington) Joe Pacold (Univ. Washington)

IXS analyzers:

Ayman Said Thomas Gog Diego Casa

Topography users/collaborators:

John Ciraldo (Rubicon Tech.) Michael Dudley , Balaji Raghothamachar , and students(Stonybrook Univ.) Stan Stoupin & Yuri Shvyd' ko

Grating Fabrication for Talbot Interferometry and FZP studies:

Derrick Mancini Michael Wojcik

Adaptive Mirror Studies:

Frank Landers (Northrop Grumman) Richard Egan (Northrop Grumman) Kevin Ezzo (Northrop Grumman) Ali Khounsary

Beamline controls:

Kurt Goetze Joe Sullivan Jeff Kirchman

Beamline reconfiguration:

Mark Erdmann Scott Wesling Dan Nocher

XSD:

Mark Beno Jonathan Lang Chris Jacobsen Linda Young

Industrial User Liason: Jyotsana Lal

MLL Studies:

Hanfei Yan (NSLSII) Jorg Maser Adam Kubec Nathalie Boutet (NSLSII) Deming Shu

Test Results of a Prototype K-B Mirror Assembly for 8-BM

XSD/OPT Group, March 4, 2013

"Testing of elliptical Kirkpatrick-Baez mirrors focusing optics for hard X-rays at the beamline 1-BM of Advanced Photon Source", Naresh G Kujala, Shashidhara Marathe, Deming Shu, Bing Shi, Jun Qian, Lydia Finney, Chris Jacobsen, Albert T Macrander, and Lahsen Assoufid*, in preparation.

Topography Applications

Monochromatic Beam

Image sources of strain that broaden rocking curves of (hkl) reflections.

Application to sapphire, GaN/sapphire, 6H-SiC, 4H-SiC, epitaxial doped Si.

White Beam

Image defects in many reflections at once. Heat load deformations can occur for poor thermal conductors (exposures > 50 msec for sapphire).

Example application: type IIa <111> diamond from TISNCM

ENERGY SYSTEMS SEMINAR

Thursday December 12, 2013, 2:00 PM

Bldg. 362 Room F-108

Analysis of Defects in Physical Vapor Transport Grown 4H-SiC Substrates and Chemical Vapor Deposition Grown Homo-Epitaxial Layers Using Synchrotron X-ray Topography

Prof. Michael Dudley

Dept. of Materials Science & Engineering, Stony Brook University, Stony Brook NY 11794-2275

Monochromatic grazing incidence topography on etched 4H-SiC wafer done in 1-BM-C

M. Dudley, B. Raghothamachar, and students, June 2013

Arrays of dislocations in an epitaxial layer arising from glide and multiplication of dislocations in the substrate was previously reported in studies of etch pits and photoluminescence: X. Zhang et al., JAP 102, 093520 (2007)

Polarization Analysis for Resonant Inelastic X-ray (RIXS) Scattering

Xuan Gao (WMU), Clem Burns (WMU), Diego Casa (APS), Naresh Kujala (APS), Al Macrander (APS)

Goal: Create an analyzer to measure polarization of the scattered x-ray in RIXS

- Make analyzer for iridates Ir L3 edge.
- Analyzer is toroidally bent high quality Si (4 4 4).
- Polarization analysis provides symmetry information about electronic excitations.
- Allows studies of magnetic excitations.
- Reduces elastic background.

General Scheme – Scattered x-rays from sample are energy analyzed by the main analyzer and than polarization analyzed by the polarization analyzer to measure the two polarization components. Signal is then focused unto a strip detector.

Coherence length measurements with a 2-D grating at beamline 1-BM at the APS

 Measurement of the coherence of the Beam wavefront reflected from a Si(111) double crystal monochromator

Measured Coherence length(ξ)				
Peak	0 ° (H)	90 ° (∨)	45	135
ξ(μm)	3.6	8.7	5	5.2

 $\xi_V = 8.7 \ \mu m \ (cal: 10 \ \mu m)$

Coherence area of the wavefront as seen from down stream at the grating position

Shashidhara Marathe, Talbot Interferometry Workshop, Gaithersburg, MD, June 17, 2013.

MLL Microscope: also suitable for testing FZPs

D. Shu, H. Yan, and J. Maser, U.S. patent 7,597,475 (2009)

Initial Studies: Fuel Cells, Catalysts

Lombard, W. K. S. Chiu. Scientific Reports, 3, 1307, (2013)

Michael Wojcik: Fresnel Zone Plate Study, Nov. 2013

3 zone plates fabricated for intermediate stacking. Slightly different focal lengths. ~150 um diameter 80 nm outer zone width 800 nm thick at outer zones

Pinhole Scans - 30 um pinhole, 8 keV : preliminary analyses

Optics Testing Done To-date at 1-BM

- X-ray topography: monochromatic & white beam; exposures as short as 50 msec
- Talbot interferometry for coherence characterization
- Analyzers for IXS: polarization selection, spherical backscattering
- Focusing optics: K-B mirrors, FZPs, MLLs

Thank you for your attention