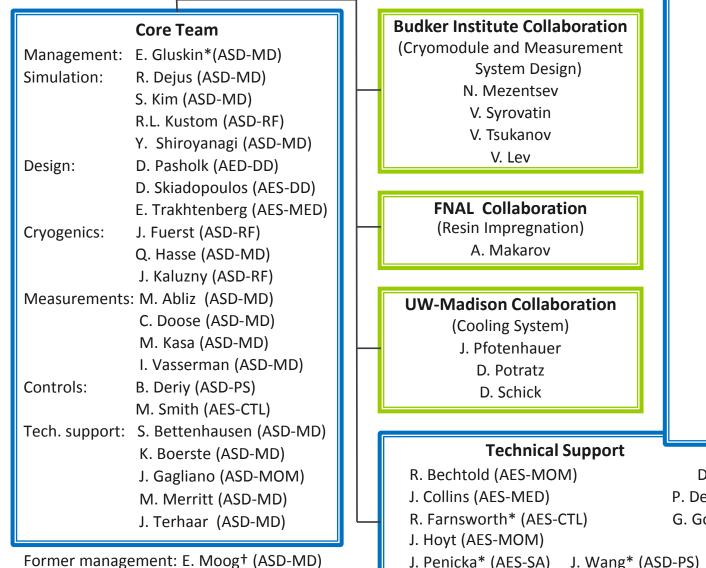


Operational Experience with the Test Superconducting Undulator (SCU0) at APS

Katherine Harkay for the APS SU0 Team

APS/Users Operations Monthly Meeting October 30, 2013


Advanced Photon Source Upgrade (APS-U) project

Outline

- Brief history
- X-ray performance
- User experience/experiments
- Cryogenic performance
- Operations
- Summary

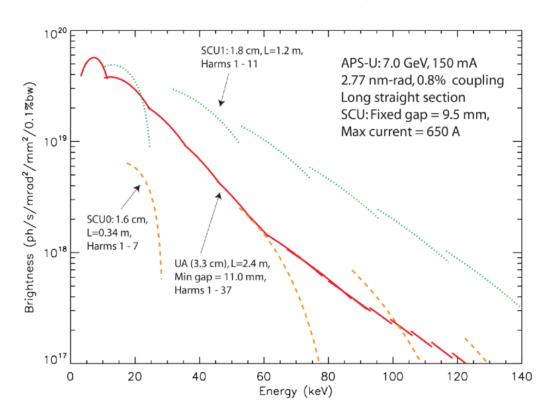
SCU0 Team

Y. Ivanyushenkov (ASD) Technical Lead and Commissioning Co-Lead

Former management: E. Moog⁺ (ASD-MD) Associate Project Manager: M. White (APS-U)

Lead	K. Harkay (ASD-AOP)	
	Commissioning Co-Lead	
tute Collaboration and Measurement ystem Design) Mezentsev Syrovatin Tsukanov V. Lev	Commissioning Team L. Boon (ASD-AOP) M. Borland (ASD-ADD) G. Decker† (ASD-DIA) J. Dooling (ASD-AOP) L. Emery† (ASD-AOP) R. Flood (ASD-AOP)	
	M. Jaski (ASD-MD)	
Collaboration mpregnation) Makarov	J. Lang (ASD-ESH/QA) J. Lang (XSD-ADD) F. Lenkszus (AES-CTL) D. Robinson (XSD-MM)	
	V. Sajaev* (ASD-AOP)	
on Collaboration ing System) otenhauer . Potratz 9. Schick	K. Schroeder (ASD-AOP) N. Sereno* (ASD-DIA) H. Shang (ASD-AOP) R. Soliday (ASD-AOP) X. Sun (ASD-DIA) A. Xiao (ASD-AOP)	
	A. Zholents (ASD-DD)	
Technical Support (AES-MOM) ES-MED) rth* (AES-CTL) S-MOM)	D. Capatina (AES-MED) P. Den Hartog* (AES-MED) G. Goeppner* (AES-MOM) W. Jansma (AES-SA)	
(AES-SA) J. Wang* (ASD-PS) S. Wesling (AES -SA)		

Brief history

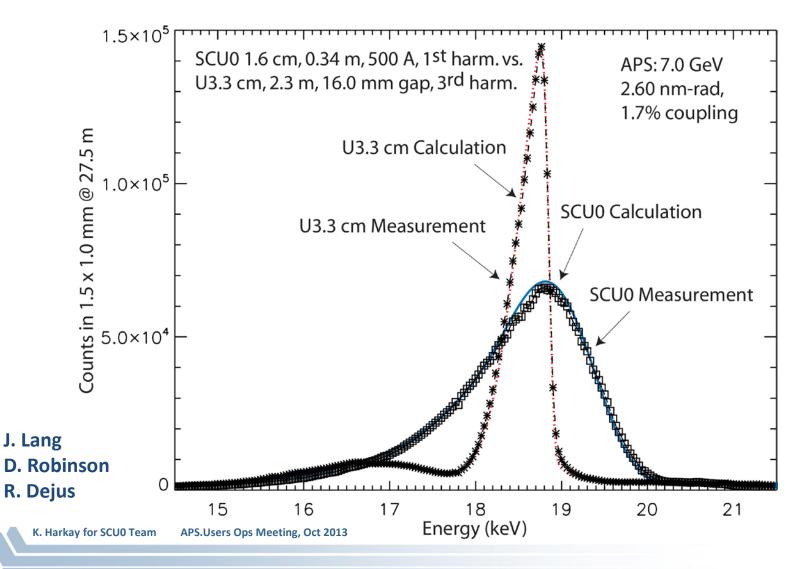

- Superconducting technology R&D: 2002-2009
- SCU0 design, fabrication, magnetic measurements, testing: 2010-2012.
- Pre-installation and commissioning of two test chambers: May & Sep 2012.
- SCU0 installed: Dec 2012.
- Completed detailed commissioning plan during extended machine startup: Jan 2013 (~130 hr).
- SCU0 released for User operation: Jan 29.

First superconducting undulators at APS

APS superconducting undulator specifications

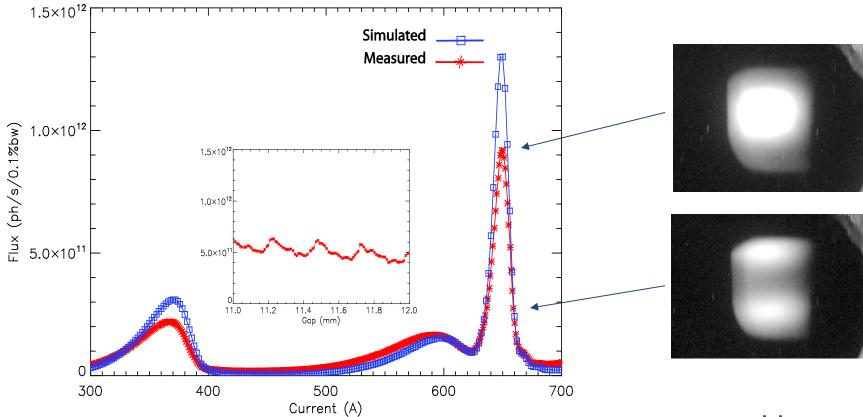
	Test Undulator SCU0	Prototype Undulator SCU1
Photon energy at 1 st harmonic	20-25 keV	12-25 keV
Undulator period	16 mm	18 mm
Magnetic gap	9.5 mm	9.5 mm
Magnetic length	0.330 m	1.140 m
Cryostat length	2.063 m	2.063 m
Beam stay-clear dimensions	7.0 mm vertical × 36 mm horizontal	7.0 mm vertical × 36 mm horizontal
Superconductor	NbTi	NbTi

This plot shows the large increases in high-energy flux provided by superconducting devices.


Y. Ivanyushenkov R. Dejus

Y. Ivanyushenkov, "Advances in Superconducting Undulators", NA-PAC'13, October 4, 2013

SCU0 and SCU1 spectral tuning curves


SCU0 X-ray performance (1)

Photon flux of SCU0 was compared with an in-line 3.3-cm-period length permanent magnet hybrid undulator (U33), using a bent-Laue monochromator.

SCU0 X-ray performance (2)

At 85 keV, the 0.33-m-long SCU0 produced ~45% higher photon flux than the 2.3-m-long U33.

Photon flux comparisons at 85 keV. Main: Simulated and measured SCU0 photon flux . Inset: Measured photon flux for in-line U33.

J. Lang D. Robinson R. Dejus M. Borland

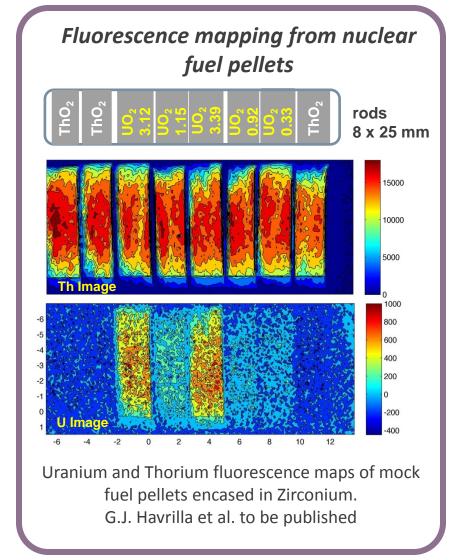
User experience with SCU0

- Beamline 6-ID-D
 - Before: ran <u>~50%</u> of the time

shared ID with 6-ID-B resonant scattering program.

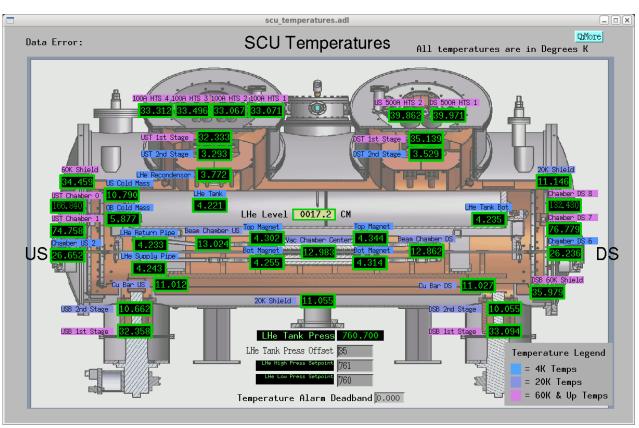
Now: Experiments scheduled <u>~100%</u>

Provides more high-energy beamtime with little additional power on optics


- Since Feb. 1:
 - Feedback from users/staff on operation and reliability of SCU0
 <u>Reliable/Stable operation; some minor communications/mode issues
 (prototype) that are being sorted out.</u>
 - 23 unique experiment performed using SCU0 6 more scheduled 2013-3
 - Represents 20 unique user groups
- Wide range of science (general purpose high-energy scattering)
 - Single crystal diffraction using 2D and point detectors (Bragg & Diffuse)
 - In-situ crystallization from levitated liquids (electrostatic & acoustic)
 - High energy fluorescence mapping of thick samples
 - Deformation studies of thin films & solder joints
 - PDF in non-standard environments

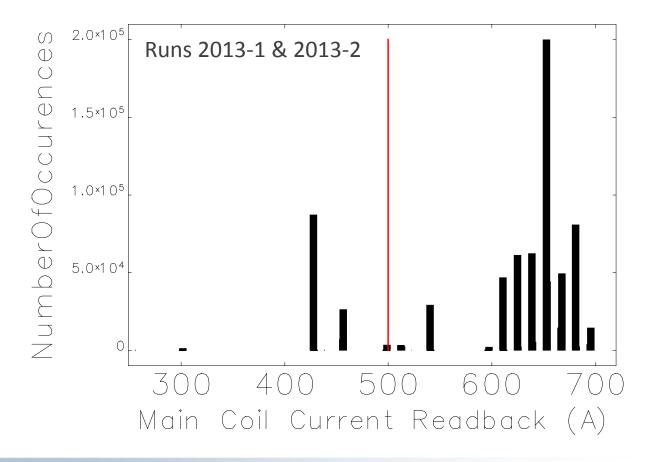
J. Lang D. Robinson

User experiments with SCU0

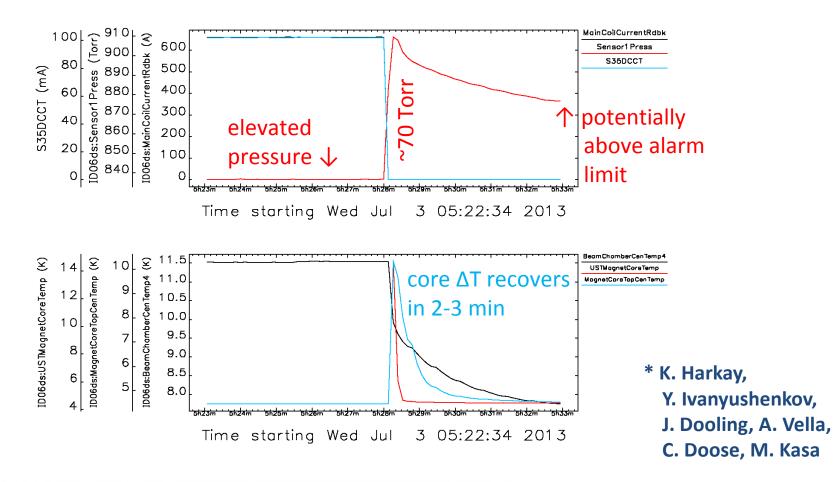


Cover image for August 2013 issue of Nature Materials features image taken with SCU0. A. Goldman *et al., Nature Mat.* **12**, 714 (2013)

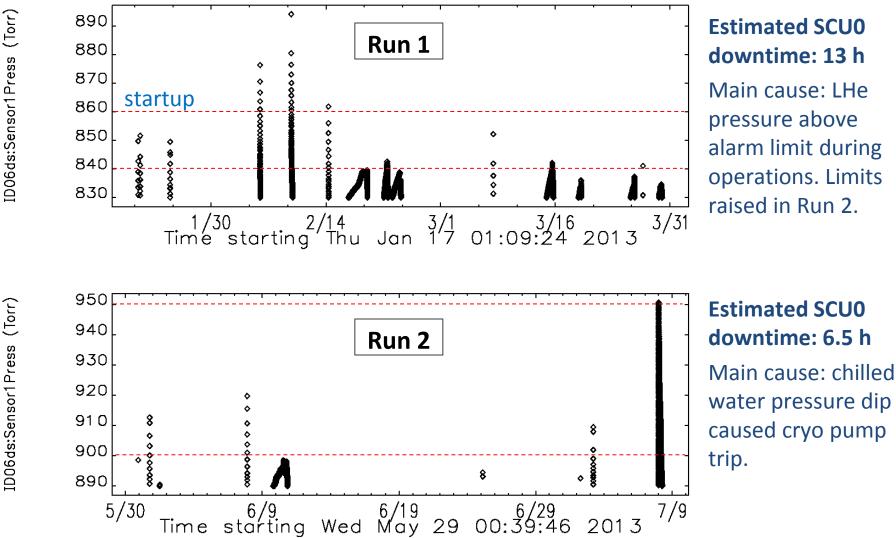
Cryogenic system performance


- Unique design features: out-of-vacuum magnetic device, thermally isolated beam chamber, cryocoolers.
- Magnet cores held at ~4 K even with 16 W of beam power on the beam chamber.
- No loss of He observed in an 10-month period.

Measured temperatures in the SCU0 cryostat at beam current of 100 mA (24 bunches), SCU0 magnet coil off.

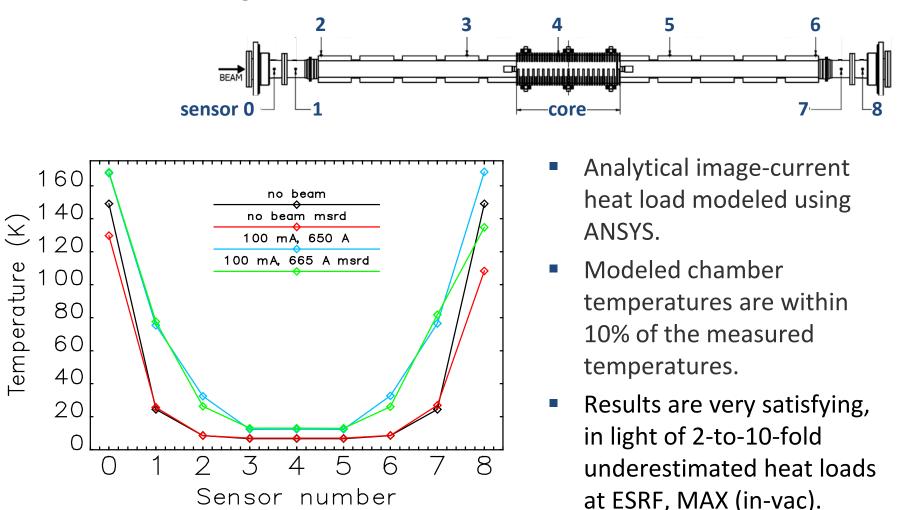

Operations

- SCU0 operates reliably well above its design main coil current of 500 A.
- User coil current setpoint & control returned automatically after interruptions, such as beam dumps, but not working perfectly yet.
- Operated with 150 mA (324 bunches) and no significant issues were identified.

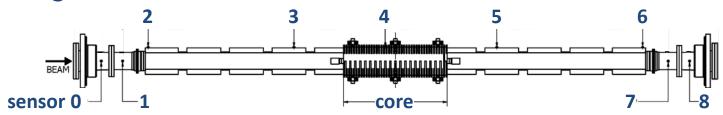


Beam dumps and quenches

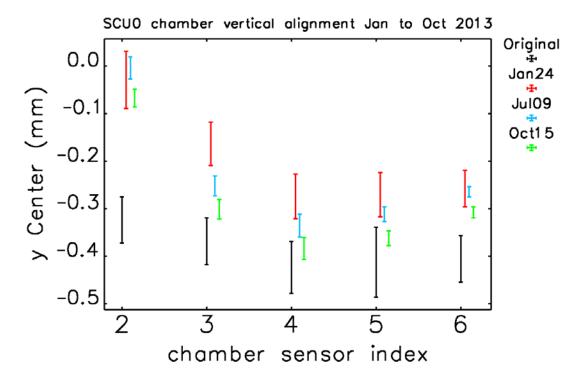
- SCU0 quenched only twice with stored beam during operations, and it did not cause orbit perturbation or beam loss.
- SCU0 typically quenches with beam dumps. Recovery is fast and impact on SCU0 User has been minor. Mitigation is under study.*


LHe pressure and SCU0 downtime

Commissioning activities

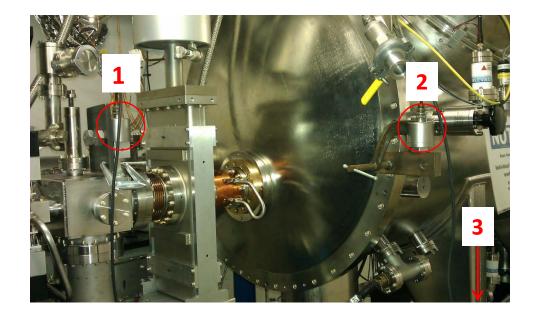

- Thermal sensor and vacuum monitoring
- Vacuum chamber layout and chamber transition heating
- Cryogenic system performance
- Orbit stability with given limits on field integral rate-of-change and absolute error requirements
- Quench response
- Field correction coil response
- Validity of estimates of beam-induced heat load
- → Alignment procedures
- Vibration effects of the cryocoolers on beam motion
 - X-ray performance
 - Storage ring operation procedures

Thermal analysis of beam-induced heat load



Y. Shiroyanagi, K. Harkay, R.L. Kustom, S. Kim C. Doose, J. Fuerst, J. Kaluzny, M. Kasa

Chamber alignment


- Chamber alignment critical to protect SCU0 from excessive beam-induced heat loads.
- Alignment corrected for cooldown, novel methods developed.*
- Novel beam-based alignment using ID steering and ΔT, giving 100-μm accuracy.**
- Initial vertical chamber offset of ~0.3 mm was detected; partially realigned *in situ*.
- Alignment is stable over time.

- * E. Trakhtenberg, W. Jansma, S. Wesling, J. Penicka, M. Kasa, C. Doose, Q. Hasse. Y. Shiroyanagi
- ** K. Harkay, L. Boon, M. Borland, L. Emery, R. Kustom, V. Sajaev, A. Xiao

Mechanical vibration

- Cryocooler vibration was not observed to adversely affect the beam motion.
- Vibration measured at three locations:
 - 1. Beam chamber, 40 cm upstream of SCU0
 - 2. Vacuum vessel, beam height
 - Support girder base (not shown)
- Results for beam chamber shown at right.

Integrated power density (μm rms), from 2 Hz to 100 Hz Cryocoolers off 0.38

Cryocoolers off	0.38
Cryocoolers on	0.68

Amplitude at 8.375 Hz (µm rms)		
Cryocoolers off	0.06	
Cryocoolers on	0.57	

C. Doose M. Kasa

Summary

- An almost decade-long R&D program on development of superconducting undulators at APS was successfully completed in Dec. 2012 with the installation of the SCU0.
- Beam commissioning was highly successful; all the operational requirements were satisfied.
- Device is in user operation since Jan. 2013, operating reliably above its design current, delivering enhanced photon flux at energies above 50 keV.
- Future SCUs are under design.*

^{*} see Y. Ivanyushenkov, Proc. NA-PAC 2013 (jacow.org)